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Abstract

In this paper, we describe our experience in implementing a non-IP routing protocol – Virtual Id Rout-
ing (VIRO) – using the OVS-SDN platform in GENI. As a novel, “plug-&-play”, routing paradigm for future
dynamic networks, VIRO decouples routing/forwarding from addressing by introducing a topology-aware, struc-
tured virtual id layer to encode the locations of switches and devices in the physical topology for scalable and
resilient routing. Despite its general “match-action” forwarding function, the existing OVS-SDN platform is
closely tied to the conventional Ethernet/IP/TCP header formats, and cannot be directly used to implement
the new VIRO routing/forwarding paradigm. As a result, we repurpose the Ethernet MAC address to represent
VIRO virtual id, modify and extend the OVS (both within the user space and the kernel space) to implement
the VIRO forwarding functions. We also utilize a set of local POX controllers (one per VIRO switch) to emulate
the VIRO distributed control plane and one global POX controller to realize the VIRO (centralized) management
plane. We evaluate our prototype implementation through the Mininet emulation and GENI deployment test
and discuss some lessons learned using the test-bed.

1 Introduction

The rapid growth in the number of computers, mobile devices, smart appliances and other machines connected
to the internet today has increased the burden on the network substrate. Such rapid growth also expedited the
need to address some of the well-known shortcomings of existing networking technologies that “glue” the Internet
together. For instance, the Internet Protocol (IP) tightly couples network layer functions such as addressing and
routing, making it difficult to transition from IPv4 to IPv6. It has poor support for mobility. Furthermore, IP
routers require extensive manual configuration. In contrast, layer-2 technologies such as Ethernet need only minimal
configurations: Ethernet switches automatically learn MAC addresses of hosts to build switching tables. However,
Layer-2 Ethernet technology does not scale to large (& wide-area networks), as it provides sub-optimal routing and
is not robust to failures.

To address these challenges, we need better layer-2/layer-3 networking technologies that is more scalable (e.g.,
with small routing tables with fast lookup speed), provide better support for mobility (e.g., by separating loca-
tion/addressing and identity/naming), provide high availability and reliability (e.g., via proactive failure discovery
and by localizing effects of failures). Furthermore, such technologies should be easy to manage and deploy – ideally,
with the abilities to self-configure and self-organize, and are endowed with stronger security capabilities. Several
Non-IP based routing and network architectures [12][13][6][8] have been proposed to mitigate some of the limitation
of the current Internet technologies. However, deployment and testing of these solutions at scale have always been
a huge challenge.

The emergence of Software Defined Networks (SDNs) and OpenFlow capable switches, such as Open vSwitch (OVS)
[2] makes testing and experimenting with future technologies easier. SDN increases network programmability by
decoupling the data and control planes [31][17]. It provides an unified API through which a centralized controller
can configure and control the forwarding behaviors of switches. Hence, it simplifies the task of configuring and
managing large networks. The SDN paradigm has been widely embraced by the research community and adopted in
large test-beds such as the Global Environment for Network Innovation (GENI) [3], a wide-area test-bed developed
by the research community to enable network innovations and large scale experimentations. As part of its network
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infrastructure, GENI has employed the OVS-SDN software platform to facilitate testing and deployment for large
scale experiments.

Virtual Id Routing (VIRO) is a novel “plug-&-play” routing paradigm for future large dynamic networks [12]. It
addresses the limitations faced by the layer-3 (L3) IP routing protocols as well as the layer-2 (L2) Ethernet switching
technology, while retaining the latter’s plug-&-play feature. VIRO decouples routing/forwarding from addressing,
and provides a (L2/L3) convergence layer that unifies the conventional L2/L3 routing/forwarding functionalities.
VIRO is namespace-independent and allows new addressing schemes to be introduced into networks with no changes
in the core routing and forwarding functions in the network data plane devices. The fundamental idea of VIRO is
the introduction of a topology-aware, structured virtual id space onto which physical identifiers and high level names
can be mapped. VIRO employs a DHT (distributed hash table) style routing algorithm to build routing tables,
look up objects (name, addresses, vid’s, etc) and forward packets [12]. Therefore, VIRO eliminates flooding both
in the data and control planes. Furthermore, VIRO is highly scalable, localizes failures, supports multi-homing,
fast rerouting, multipath routing and it is easy to manage and deploy. By decoupling addressing from routing, it
also enables access control as packets enter a network, and allows other security features to be incorporated into
the network control and management more seamlessly. In a nutshell, VIRO is designed with two broad sets of
goals: i) to support with minimal manual configuration (future) large, dynamic networks which connect tens
or hundreds of thousands of diverse devices with rich physical topologies; and ii) to meet the high availability,
robustness, mobility, manageability and security requirements of these networks and the services running on top of
them. These goals are motivated partly by the rise of huge data centers, emergence of cloud computing and services,
Internet of Things (IoT) as well as the continued trends in large campus, enterprise and ISP (wired, wireless and
cellular data) networks to use 1/10/100 Gigabit Ethernet as the core (layer-2) networking technology.

In this paper, we describe our experience in implementing and deploying VIRO in GENI using the SDN platform.
We have implemented an initial prototype of VIRO in GENI, and our goal is two-fold: firstly, to test and evaluate
VIRO’s functionality and performance in GENI, and in the long term to incorporate VIRO in GENI, as a non-IP
service, to support research, experiments and educational activities by other GENI researchers. To our knowledge,
we are the first to deploy and test a non-IP routing protocol in GENI. Furthermore, we take advantage of the built-in
fast rerouting and load balancing capabilities of VIRO to propose a novel in-network pathlet switching framework
for software-defined networks that fully exploit the path diversity available in the network. The contributions of
this paper are as follows:

• We implement and deploy an initial prototype of VIRO in GENI using the SDN platform.

• We perform experiments to evaluate VIRO packet’s encapsulation/decapsulation overhead and our failure
recovery mechanisms. In addition, we carry out experiments to evaluate VIRO supporting for host mobility
and forwarding of VIRO frames with GENI stitching. The results of these experiments will help us to improve
and extend our VIRO prototype.

• We propose a novel in-network dynamic pathlet switching framework with VIRO for software-defined networks

• We describe our experience and lessons learned in implementing and deploying a non-IP protocol in GENI.

The remainder of the paper is organized as follows. Section 2 provides an overview of VIRO. Section 3 discusses
our implementation and deployment of VIRO in GENI. In Section 4 we present our in-network pathlet switching
framework with VIRO for SDN networks. In Section 5 we present our new routing paradigm – dubbed routing via
preorders – which circumvents the limitations of conventional path-based routing schemes. Section 6 presents our
experiments and discusses our experimental results. We conclude and discuss future work in Section 7.

2 VIRO: Virtual Id Routing Protocol

In this section, we provide an overview of VIRO’s three main components: vid space construction and vid assign-
ment, VIRO routing, and vid lookup and forwarding. For more details about the VIRO routing protocol, the reader
is referred to [12].

VIRO is a topology-aware, structured virtual id (vid) routing protocol for future networks. It introduces a self-
configurable, self-organizing virtual id layer (layer-2/3 convergence layer) where both physical identifiers (e.g. MAC
addresses), as well as higher layer addresses/names (e.g., IPv4/IPv6 or flat-id names) are mapped [12]. VIRO’s
structured vid space embeds the physical network topology formed by the connections among physical network
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Figure 1: VIRO routing table for node A. Figure 2: vid space as a virtual binary tree: the
grey dotted lines denote physical connectivity and
the red boxes represent the unused vid’s

components. Such embedding is illustrated in Figure 2 using a Kademlia-like [21] virtual binary tree, where the
physical devices (e.g. switches) are represented by the leaf nodes. All intermediary nodes in the virtual binary tree
are logical nodes labelled with the bit-strings representing the vid’s of the VIRO switches residing in that subtree.
Next, we describe the main components of VIRO:

Vid space construction and vid assignment: at the network bootstrapping phase, the topology-aware, struc-
tured vid space is constructed. VIRO uses a Kademlia-like virtual binary tree to structure the vid space, where
each VIRO switch (a leaf node of the tree) is assigned an L-bit string vid corresponding to the bits from the root
to that leaf node. After the network bootstrapping process, the vid of a new VIRO node joining the network is
assigned based on the vid’s of its physical neighbors. When an end-host attaches to a VIRO switch, it is assigned
an extend vid comprised of the L-bit vid of the switch plus a random l-bit host id. This virtual id space preserves
the physical proximity of the nodes.

Routing Tables Construction: VIRO routing tables are constructed based on the vid logical distance(σ)1

between the nodes for each level of the vid space. It employs a DHT-like “publish-&-query” mechanism, where
each node publishes and queries gateway information to reach specific level of the virtual binary tree to rendezvous
points (rdv). In VIRO, a gateway (GW) is a node that has a direct (physical) edge to a node in a neighboring
subtree of the same level in the vid space. The rdv nodes store GWs information to reach specific levels in the vid
space. The connectivity information stored at rdv is a pair of [level, gateways list] to reach a sub-tree in the
vid space. The set of all routing information stored at any rdv is called rendezvous store. Each rdv maintains the
list of nodes using the gateways in its store: {(GWx : nodex, nodey); (GWy : nodek, nodez); ...}.

VIRO completely eliminates network flooding in both the control and data planes. VIRO’s vid prefixes are used to
aggregate routing information for sections of the network (e.g. 10***). Thus, VIRO routing table size is O(log N),
where N = number of nodes in the network. In VIRO, failure of a link or switch are localized because no switch
needs to maintain a network-wide full topology.

Virtual Id lookup and Forwarding: forwarding of packets in a VIRO network is performed using vids only.
However, at the networks edges the vids are mapped to persistent identifier (pid), e.g. MAC address/IP address,
or vice-versa, in order to locate the end-hosts or to route VIRO packets in the network. Routing in VIRO is done
based on destination vid and GWs information. For example, suppose node C, vid(C) = 00100, wants to send a
data packet to node F , vid(F ) = 10010 (see Fig. 3). According to VIRO routing protocol, node C will compute the
logical distance between its vid and F’s vid, namely, L - length of the longest common prefix between them, which
is 5. Assuming its level 5 routing table is empty, node C will then query its level-5 rdv point (node A) for a level-5
GW. Next, node A will return node B (which is directly connected to E in a neighboring level-5 subtree) as node’s
C level-5 GW. Afterwards, node C will look up its routing table for a nexthop (a directly connected neighbor, in
this case node A) to reach B for packets destined to F . For more detail about VIRO forwarding operations, the
reader is referred to [12].

1σ = L - length of the longest common prefix.
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Figure 3: VIRO routing tables and rendezvous point

3 DESIGN AND IMPLEMENTATION

In this section, we present the design & implementation framework of VIRO-GENI. First, we discuss the challenges
in implementing VIRO, a non-IP protocol using the OVS/SDN platform. Next, we describe our data/control/management
plane solutions to address the challenges. We conclude this section by providing a detailed example of how for-
warding is done in a VIRO-GENI network.

3.1 Implementation Challenges

Figure 4: Software Stack in VIRO-GENI Node

The OVS software platform is derived from the OpenFlow switch specifications and SDN paradigm. When compared
to traditional network devices (e.g. Ethernet switches and IP routers), Openflow and OVS enable a far more flexible
data plane with configurable forwarding behaviors at the “flow” level, which are defined by the “match-action”
rules specified by a SDN controller. Nonetheless, the existing Openflow/OVS/SDN platforms are strongly tied to
the conventional Ethernet/IP/TCP protocol stack. In contrast, VIRO has its own “topology-aware” addressing
(vid’s) scheme, with its unique routing and forwarding behaviors. It employs a distributed routing protocol with
a novel “pub-sub” mechanism [12] and it has build-in multipath and fast failure (re)routing capabilities. VIRO
forwarding is done by using both the destination vid (via vid prefix matching) and a forwarding directive to look
up VIRO routing tables to select a gateway and then the next-hop. Thus, VIRO’s forwarding behavior cannot be
directly implemented using the standard “match-action” function of OpenFlow.
GENI has employed the OVS-SDN software platform. Hence, we cannot directly deploy and test a non-IP protocol
in the testbed because of the limitations of existing OVS-SDN platform. In the following, we present our design &
implementation framework as well as solutions to overcome the challenges in adapting the OVS/SDN platform in
implementing a non-IP protocol such as VIRO in GENI.
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3.2 Design Overview

We modify the OVS software to implement VIRO switching functions in VIRO-GENI switches (nodes), and adapt
SDN controllers to implement VIRO control and management plane functions, see Figure 4. As will be detailed
further below, VIRO-GENI nodes use OVS in the data plane and POX controllers in the control and management
planes. Each node runs the software stack shown in Figure 4. In the data plane, we repurpose the Ethernet MAC
address to represent VIRO virtual id. We also modify and extend the OVS match-action (both within the user
and kernel spaces) to realize VIRO packet forwarding functions. The (slow-path) OVS daemon (in the user space)
connects to an OpenFlow local controller (LC) that executes the VIRO module which is responsible for running the
VIRO routing protocol. Furthermore, the OVS daemon connects to a remote controller (RC), which is responsible
for VIRO’s management plane.

3.3 Data Plane

In this subsection, we describe the data-plane implementation in VIRO-GENI node. First, we discuss how we
repurpose the standard Ethernet frame to represent a VIRO frame, and we conclude by discussing the modifications
we make in OVS in order to forward VIRO frames.

3.3.1 VIRO Frame

For the data plane implementation, we use OVS version 1.0 with Nicira’s extensions. To route VIRO packets in the
data plane, we first define the VIRO frame [23], see Figure 5. It extends the Ethernet frame in a similar way to the
VLAN protocol. VIRO frame has the EtherType 0x0802 to differentiate it from standard Ethernet protocols such
as IP, LLDP and ARP. In a VIRO frame, we reuse the 6-bytes of the source and destination MAC addresses (SMAC
and DMAC) of the standard Ethernet frame, to set the VIRO virtual addresses (Vids). From the DMAC, it uses
4-bytes for the destination switch’s vid (DVID), and 2-bytes for the destination host (DHOST) identifier. Similarly
for the SMAC, it uses 4 and 2 bytes to set the source switch’s vid (SVID) and source host (SHost) identifier.

After the 12 bytes in the Ethernet frame, we introduce new 6 bytes for the VIRO protocol header, where we
have 2-bytes for VIRO’s protocol identifier (VPID), and the last 4-bytes are the forwarding directive (FD)[12].
The remaining bytes in the VIRO frame are used to encapsulate the EtherType and the payload of the original
Ethernet frame 2. In the original Ethernet frame, we add a new EtherType 0x0803 for VIRO control packets (see
Section 3.4.3). By adding 6-bytes to the Ethernet frame header, to include VIRO protocol header, we use Path
MTU Discovery at the end-hosts to reduce their frame size, in order to avoid encapsulation without using any
fragmentation [23].

Figure 5: VIRO Frame

3.3.2 OVS Extensions

The Open vSwitch implementation consists of two components: a kernel (fast path) and a userspace (slow path).
The kernel implements the forwarding engine responsible for per-packet lookup, modification and forwarding. In
addition, it maintains counters for each forwarding table entry[28]. However, the majority of the OVS functionality
is implemented within the user space. The main component in the user space is the “ovs-vswitchd” module. It
communicates with kernel module over netlink and with outside world using OpenFlow. This module is responsible

2They form the payload of the VIRO frame
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Figure 6: Packet processing in OpenVswitch

for reading the openFlow configuration from ovsdb-server3[29]. Its packet classifier supports efficient flow lookup
with wildcards and checks datapath flow counters to handle flow expiration and statistics requests[29].

When a packet arrive to an OVS, it is first processed by the fast path. In the Kernel, the packet header fields
are extracted. Then, these header fields are hashed and used as an index into a set of large hash tables. If an
entry is found, the actions corresponding to this entry are applied to the packet and OVS counters are updated.
Otherwise, the packet is sent to the userspace and the OVS miss counter is incremented. In the slow path, when a
packet is received from Kernel, it is given to the classifier to look for matching flows in the flow tables. If there is a
table-miss the OpenFlow API calls the connection manager to encapsulate the packet in a Packet In message and
send it out to the SDN controller attached to the switch. When the controller receives the Packet In message, one
or more applications running on the controller may process the message and install rules in the openFlow table in
the switch via a Flow Mod message, so that future packets can be processed on the switch [22]. Figure 6 illustrates
this process (Steps 1-5).

The current OpenFlow matching operations, header fields and allowable actions are still tied to the Ether-
net/IP/TCP protocol stack. On the other hand, VIRO has its unique routing and forwarding behaviour. Thus,
VIRO’s forwarding cannot be directly using the standard “match-action” of OpenFlow. Therefore, to forward our
VIRO frame in the OVS data-path, we modify and extend match/actions both the OVS fast and slow path with
new actions: insert/remove VIRO headers, rewrite the forwarding directive and match on VIRO switch’s vid. With
these additions, the OVS fast and slow path are now responsible for the following tasks:

• OVS Daemon (Slow-Path): to translate between IP packets/VIRO packets (EtherType, FD) and to insert
rules for routing at Kernel.

• OVS Kernel (Fast Path): to translate between IP packets/VIRO packets (end-host), to forward IP packets
among local machines and to forward VIRO packets.

Table 1 shows the list of new actions, we have added in both fast and slow paths:

3Database that holds switch-level configuration
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Actions Descriptions
PUSH FD add VPID and FD
POP FD remove VPID and FD
SET VID SRC SW set the first 4 bytes of the SVID
SET VID SRC HOST set the last 2 bytes of the SHost
SET VID DST SW set the first 4 bytes of the DVID
SET VID DST HOST set the last 2 bytes of the DHost
SET VID FD SW set first 4 bytes of the FD
SET VID FD HOST set the last 2 bytes of the FD

Table 1: List of the new actions added to our extended OVS.

In addition to routing VIRO packets, the data-plane also forwards normal Ethernet frames for packets transmitted
among local hosts, attached to the same VIRO-GENI node for example.

Hence, for a VIRO switch that runs our extended version of OVS, there are typically three scenarios when a packet
needs to be forwarded:

• Case 1: If a normal ethernet packet enters into a VIRO network, we need to encapsulate the ethernet packet
into a VIRO frame and forward it to the nexthop VIRO router. To transform it to a VIRO frame, we need
to first rewrite the source MAC address to its corresponding source VID, and push FD and VIRO ethertype
to the frame. Then we lookup the routing table and forward the packet to the corresponding port according
to destination VID. Figure 7 shows the actions that are taken inside the egde router.

Figure 7: Encapsulation: From Ethernet Frame to VIRO Frame

• Case 2: If a VIRO packet is about to leave the VIRO network, we need to decapsulate the VIRO packet
into an ethernet packet and forward it to the outside netowrk. To transform it to an ethernet frame, we need
to first rewrite the destination VID to destination MAC address, and pop out FD and ethertype from the
frame. Then we forward the packet to the corresponding host that is attached to this edge router. Figure 8
shows the actions that are taken inside the egde router.

Figure 8: Decapsulation: From VIRO Frame to Ethernet Frame
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• Case 3: If source host and destination host are attached to a same VIRO router, the router only simply need
to forward the ethernet frame from one host to another. Figure 9 shows the actions that are taken inside the
egde router.

Figure 9: Directly Forward Ethernet Frame from One Host to Another

Figure 10: Main components used to build VIRO control and management planes

3.4 VIRO POX Controller

In this subsection, we describe how we implement our control and management planes. Firstly, we describe the
types of events we implement to be handle by those modules. Then, we discuss our core, local and remote modules,
the keys pieces used to construct our VIRO control and management planes. Figure 10 illustrates how these
modules are combined together to implement VIRO routing protocol.

3.4.1 Events

We create the following list of events4:

• ViroSwitchUp: raised when a switch connects to a controller.

• ViroSwitchDown: raised when a switch disconnects from a controller.

• ViroSwitchPortStatus: raised when the controller receives an OpenFlow port-status message.

• ViroPacketInIP: raised when the controller receives an IPv4 packet.

4This events are handled by our remote and local POX modules
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• ViroPacketInIPV6: raised when the controller receives an IPv6 packet.

• ViroPacketInARP: raised when the controller receives an ARP packet.

• ViroPacketInLLDP: raised when the controller receives an LLDP packet.

• ViroPacketInVIROData: raised when the controller receives a VIRO data packet.

• ViroPacketInVIROCtrl: raised when the controller receives a VIRO control packet.

3.4.2 Core Module

This module listens and handles the following OpenFlow events: ConnectionUp, ConnectionDown, PacketIn and
PortStatus:

• ConnectionUp Event: upon receiving this event, the core module raises a ViroSwitchUp event.

• ConnectionDown Event: upon receiving this event, the core module raises a ViroSwitchDown event.

• PortStatus Event: upon receiving this event, the core module raises a ViroSwitchPortStatus.

• PacketIn Event: upon receiving a packetIn event, the core modules raises a event based on the packet type,
e.g. IP, VIRO, ARP, etc.

3.4.3 Local Module

This module implements the VIRO LC functionalities running on each node. VIRO control packets are identified
by the protocol ID 0x0803 in the frame payload (EtherType) to differentiate them from VIRO data packets (e.g.
IP packets). This module listen and handles the following events raised by the core module:

ViroPacketInVIROCtrl Event: upon receiving this event, the LC processes the VIRO control packets accord-
ingly. The types of control packets are the followings:

• RDV Publish, RDV Query, RDV Reply : used to publish, query or reply routing information from/to VIRO
rendezvous nodes.

• GW Withdraw, GW Remove: used to advertise failed gateways information to others nodes.

• Controller Echo: used to assign switch’s vids by the RC.

• Neighbor Echo Request & Reply : heartbeat messages used to discover the physically attached switches.

• Local Host : used to send host addresses mapping to the LC.

For an explanation of how these packets are used in the VIRO routing protocol, the reader is referred to [12] and
to Section 3.6.

ViroPacketInVIROData Event: upon receiving a VIRO data packet the LC compares the packet destination
vid to the vid of the switch attached to it. If both vids are the same, the LC converts the VIRO frame into an
standard Ethernet frame by replacing the DMAC by the DVID, removes the VIRO protocol header and route the
generated Ethernet frame (packet decapsulation) to the destination host. Otherwise, it routes the VIRO frame to
the next hop based on its VIRO table. Lastly, RC adds a OpenFlow rule for subsequent packets.

ViroPacketInIP Event: upon receiving an IP packet, the LC convert the standard Ethernet Frame into a VIRO
frame, by replacing the SMAC with the SVID and pushing the VIRO headers (packet encapsulation). Furthermore,
it routes the generated VIRO frame to the next hop.

ViroSwitchPortStatus Event: upon receiving a VIRO port status event, the LC checks the type of event. If it
is equal to “modified”, it look up its local topology table to find if the modified port is attached to a host machine.
If the port is attached to a host, the LC removes the specific host from its topology table. Furthermore, it notifies
the RC that the host was disconnected from the switch 5.

5This functionality is still being implemented
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ViroSwitchUp Event: upon receiving this event, the LC adds OpenFlow rules to the switch to receive all packets
miss of type VIRO and IP packets. In addition, it sends its controller ID to the switch.

In summary, the VIRO module attached to LC running on each node is responsible handling VIRO control packets
used in VIRO routing protocol, to encapsulate/decapsulate IP packets from/to host machines and to handle packet
miss from the data-plane (see Section 3.6 and 3.7).

3.5 Remote Module

This module implements the VIRO RC functionalities running on each node. It listens and handles the following
events raised by the core, arpd, dhcpd modules 6: ViroSwitchUp, ARPRequest, DHCPLease.

ViroSwitchUp Event: upon receiving a VIRO switch up event, the RC sends its Id to the switch. Additionally,
it assigns the switch vid and add the respective switch to its topology table, see Section 3.6. for more details.

ARPRequest Event: upon receiving this event, the RC controller performs the mapping IP=VID and replaces
the DMAC with the DVID in the ARP reply.

DHCPLease Event: upon receiving this event, the RC finds from its topology table the switch attached to the
host issuing the DHCP request. Then, it assigns the host vid, which is composed of switch vid prepended to host
l-bit identifier.

As illustrated in Figure 3, every VIRO-GENI node will be connected to a single remote controller. Unlike the local
controller (LC), the remote controller (RC) is the only instance that all OVSs in the network connect to. The
purpose of this controller is to simplify the management plane functions that can be performed in a centralized
fashion. By listening to the events described above, the RC is responsible for the following: network topology
discovery and maintenance (host/switch added or removed), vid assignment (host and switches), ARP and DHCP
request and IP/VID/MAC/PORT mapping (Global view). In Section 3.6 we discuss in details the RC’s functions.

3.6 VIRO-GENI Network Boostrapping

In this subsection, we present the main events that occur during the bootstrap of a VIRO-GENI network. Recall
that the OVS in each node in the network is connected to a local controller running the VIRO module, and all the
nodes are connected to the same remote controller for management plane functions.

Connection Up: initially, when a VIRO-GENI switch starts it connects to both local controller(LC) and remote
controller (RC) using the standard OpenFlow protocol. The RC will insert rules to receive all the ARP and DHCP
packets generated by host machines. We assign Ids to the controllers (RC-Id = 1 and LC-Id = 2). The VIRO-GENI
switch uses these Ids to differentiate both controllers, e.g.: ARP packets are sent to controller with Id=1.

Vid Assignment: a VIRO-GENI switch gets its vid from the RC. The RC constantly sends Controller Echo
message every k seconds to the LCs with the vid of the respective switch 7. However, host’s vids are assigned when
a host issues a DHCP request. Whenever a RC leases an IP addresses, it also assigns the host vid – first L-bits
(4-bytes) from the host access node and last l-bits (2-bytes) for the DHost.

After assigning the vids, the RC saves the mapping DPID/VID for switches and the mapping MAC/IP/VID/PORT
for hosts to its topology table, in order to build its global view of the network. In addition, after the host’s vid
assignment, RC will add the host to the list of “attached host” for the respective switch (access-node). Furthermore,
it sends the host’s address mapping information to the respective LC.

Neighbor and Failure Discovery: the Local VIRO modules attached to each node find the physically attached
switches by exchanging Neighbor Echo Request & Reply messages every i seconds. The VIRO module, in each
node, has a table for saving the neighbors’ vids. This table is updated whenever a neighbor Echo Reply message
is received, and the last updated time is recorded for each entry. We use this table to find the failed neighbors,
for example: if an entry is not updated after j seconds, then we consider this neighbor switch as failed. We also
use OpenFlow Port Status messages for neighbor failure discovery. More precisely, the VIRO LC listen for Port
Status events, and upon receiving such event checks if the event type is equal to “modified”. If so, the LC finds if

6We reuse POX’s ARP and DHCP modules
7We will use these echo messages in the future for RC failure discovery
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the modified port is attached to a host by looking up its topology table. If a host is associated with this port, the
LC removes the specific host attached to the modified port from its local topology table. Furthermore, it notifies
the remote controller that the host was disconnected from the switch. The RC uses this information to update its
topology table in order to keep a consistent global view of the network 8. VIRO handles nodes failures without
resorting to flood of failure notification (as used in OSPF), instead, it utilizes a withdraw and update mechanism
[12].

Routing Table Construction: the local VIRO module in each VIRO-GENI node builds its routing tables using
the publish-&-query algorithm described in [12] (RD Publish, RDV Query, RDV Reply messages). These routing
tables are installed into the OVS slow-path flow-tables to immediately perform any intermediate packet forwarding
[23].

End-Host Discovery: the VIRO module connected to the LC discovers the end-host attached to its local
switch from Local Host messages receive from the RC during the DHCP lease process. It stores the mapping
IP/MAC/VID/PORT for future end-host name resolution, and it uses this mapping to build its local view.

Pid-Vid Resolution: in the original design of VIRO[12], a one-hop (multi-hop) DHT is used for pid-vid look-up
and resolution. For simplicity, in our current implementation, we use a centralized approach for pid-vid resolution:
i) When an end host (VM) joins a VIRO network, it first runs DHCP. The DHCP request is captured and sent to
RC by the VIRO switch attached to it. After leasing an IP address to an end host, RC assigns the host vid and
it saves the mapping pid-vid in its topology table; ii) When one end host x wants to communicate with another
host y in a VIRO network, it first issues an ARP request. The VIRO switch attached to it forwards this packet to
the RC. Then, RC returns host y vid in the ARP reply by replacing DMAC with host y vid (recall that RC has a
global view of the network).

Network topology discovery/maintenance: the RC has a global view of the network. It maintains a topology
table with the information of all the switches attached to the network, and their list of attached hosts. Recall
that the RC discovery the switches in the network during “ViroSwitchUp” events and the list of hosts attached to
a switch during DHCP leases. However, to maintain a consistent view of the network, RC relies of notifications
from the LC whenever a host disconnects from a switch. In addition, during an ARP request, the RC compares
the vid of the switch attached to the host issuing the ARP request with switch’s vid for this respective host from
its topology table. If both informations are not consistent, the RC removes the obsolete entry from its topology
table and assigns a new vid to the respective host. Lastly, it sends a local host message to the respective LC
with the address mapping for this host 9. In the future, we will use “connection down” event to find the switches
disconnected from the network.

In summary, whenever a new VIRO-GENI switch is attached to the network. Firstly, it connects to the RC and
LC controller. Consequently, it receives its vid from the RC. Then, it discovers the physically connected neighbor
by generating Neighbor Echo Request & Reply messages. It uses these packets or PortStatus events to discover the
failure of its directly connected nodes. In addition, it builds its routing table by exchange control packets with
the others LCs (VIRO’s publish-&-query algorithm). Lastly, it discovers its attached hosts during the host vid
assignment process (Local Host messages).

3.7 Packet Forwarding in a VIRO-GENI Network

In this subsection, we explain how the address/vid mapping and packet forwarding is performed in a network
composed with VIRO-GENI switches. To achieve this, we use the example illustrated in Figure 5. In this example,
host x communicates with host y, using the following steps;

• Host x sends a ARP query to resolve host y IP address.

• VIRO-GENI switch x forwards the ARP query to RC.

• RC returns the ARP reply packet and it replaces the DMAC with the vid of host y, which is composed of
switch y vid prepended to host y l-bit identifier (recall that RC has a global view of the network).

• Host x receives the ARP reply and generates the first Ethernet frame, whose DMAC address is host y vid.
This frame is forwarded to switch x.

8This functionality is still being implemented
9This functionality is still being implemented
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Figure 11: VIRO packet forwarding between two host machines

(a) Topology in GENI (b) Network topology

Figure 12: VIRO packet processing overhead experimental setup

• The Ethernet frame will be received by the source’s access node (switch x), and it will generate a miss in the
OVS fast-path and slow-path. Then, the frame will be send to VIRO LC, and it will replace the SMAC with
the SVID. In addition, it will push the VIRO headers into the Ethernet frame and forward the packet to the
next destination, according to its routing table. Lastly, it will add OpenFlow rules to insert the VIRO packet
header into packets received from host x and to set the SVID and SHost appropriately. This will cause future
packets to be forwarded by the fast path.

• The intermediary VIRO switches (e.g. switch z) will forward the VIRO packets to the next hop, according
to their VIRO routing table (this process may include rewriting the FD).

• When the VIRO packet is received by the destination VIRO switch y, it will first generate a miss in the OVS
fast and slow path. Then, the packet will be send to VIRO LC. Next, LC will find that it is attached to the
destination access node (switch y), by comparing the packet DVID with the access node’s vid. Hence, LC
will pop the VIRO header and replace the DVID with host y MAC address (recall that LC has local view of
all host attached to it). Afterwards, LC will forward the packet to host y. Furthermore, it will add OpenFlow
rules to remove the VIRO packet header and rewrite the destination MAC address for subsequent packets.

• All packets between host x and y are transmitted in the VIRO-GENI network using a similar process.

• Packets transmitted between host x and k use the standard Ethernet frame, because both hosts are attached
to the same access node VIRO-GENI switch x.

4 IN-NETWORK DYNAMIC PATHLET SWITCHING

The current best-effort IP protocol cannot readily provide the bandwidth and other service guarantees that many
applications such as video streaming require today. End system based path switching and load balancing across
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multiple paths have been proposed as an alternative approach to meet the bandwidth requirements of today’s
applications. These solutions require end systems to be multi-homed so as to exploit the path diversity in today’s
network. In this section, we propose a novel in-network pathlet switching framework for software-defined networks
using the Virtual Id routing Protocol (VIRO). In our framework, we take advantage of the built-in fast re-routing
and load balancing capabilities of VIRO to perform dynamic pathlet selection, switching and load balancing to
fully exploit the path diversity available in the network.

In the next subsections, we discuss in detail our in-network dynamic pathlet switching framework using VIRO,
where we have extended the functionalities of VIRO’s Rendezvous nodes, Local and Remoter controllers to support
pathlet switching (see Figure 14).

4.1 Overview

In-network pathlet switching is a mechanism that allows network devices (e.g. routers, switches) to dynamically
switch among several paths to a destination based on their performance. To achieve in-network pathlet switching,
two conditions must be met. Firstly, it is necessary to obtain performance information of the current path as well
as alternative paths in the network. Secondly, it is necessary to have a mechanism and/or component responsible
for making the path switching decision inside the network, when the performance of the current path degrades
significantly.

In this work, we propose an in-network dynamic pathlet switching system by taking advantage of the VIRO routing
protocol and the SDN paradigm. We use VIRO’s routing capability and SDN switch’s statistics to make local and
global path switching decisions. We collect information about “latency and throughput” and use VIRO enabled
SDN controllers to make path switching decisions inside the network. The latency information is collected by
adding additional mechanism to measure the latency to gateway per node. Furthermore, we use the statistics
reported by OVS to get the throughput information per gateway approach or flow throughput. Next, we discuss
the functions of each component used in our in-network dynamic pathlet switching system: local controller, remote
controller and rendezvous point.

4.2 Local Controller

The VIRO LC in our VIRO-GENI node will be responsible to estimate per gateway throughput and to monitor the
latency to others gateways from a node point of view. To compute the latency, LC will periodically send probes
packets with unique identifier (ID) to each available gateway. Upon, receiving a probe packet, a gateway node will
forward this packet back to the sender. Then, each VIRO LC will record the time at which it sends and receives
probes messages. These values, alongside the probe ID in each probe packet, will be used to estimate a node latency
to a gateway. In addition, a LC attached to a gateway (GW) node will use the OVS statistics to compute the
GW’s throughput. The LC will periodically report these values 10 to RC.

4.3 Remote Controller

VIRO RC maintains a full view of the network topology (hosts, switches and links). It receives the list of GWs
from the rvd points in the network and maintains a mapping of rdv nodes and their respective list of GWs. In
addition, it also receives messages with GW’s throughput information from LCs attached to GWs nodes. Using
this information, the RC periodically notifies the rdv points about the status of their gateways. Furthermore,
the RC can query nodes, in the network, for information about their latency to any gateway, as well as, provide
information about the quality of any path in the network.

4.4 Rendezvous Point

Recall from Section 2 that each VIRO node publishes and queries routing information to rendezvous nodes(rdv),
in order to build its VIRO’s routing table. The rdv is one of the components used to implement our in-network

10throughput and delay
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pathlet switching. In this framework, the rdv node periodically reports to RC its list of GWs (rdv store), and it
receives notifications from the RC about the status of its GWs. Then, when rdv receives a rdv query message,
it will also include information about the GW’s throughput for the entire list of GWs returned in the rdv reply
message. In addition, the rdv periodically sends GW’s throughput information to the nodes using any GWs in its
rdv store 11.

The advantage of this framework is that path-switching decisions can be made at different levels in the network.
For example, the LC can use the information about the measured latency to all its gateways, along with the
information about the GW’s throughput, to initialize path switching inside the network. Furthermore, it can also
coordinate with the RC in order to make path switching decisions in the network. Similarly, the rdv point, based
on the VIRO routing protocol, receives GW failure notifications for the list of GWs in its rdv store. Hence, when
any of its GWs fails, rdv can notify the others nodes using the “failed GWs” to switch to a different GW, thereby
initializing path switching in the network. Lastly, the rdv can also coordinate with the RC in order to make path
switching decisions for all flows in the network. In the future, we will develop algorithms that take advantage of
the different levels of decisions for path switching in our proposed framework.

4.5 In-Network Pathlet Switching End-to-End Example

In this subsection, we explain how in-network path switching is performed in a network composed with VIRO-GENI
switches. To achieve this, we use the example illustrated in Figure 13. In this example, we use the Abilene network
[1] topology and we assign VIRO vids to each node – for more on VIRO vid assignment the reader is referred to
[12]. In Figure 13 each node represents a VIRO-GENI switch. Hence, they have both local (LC) and remote (RC)
VIRO. SDN controllers, but for simplification we are omitting the controllers illustration in that Figure.

In Fig. 13, the client in Seattle communicates with a server in New York. Based on VIRO’s routing tables the client’s
path to communicate with the server is the following: Seattle → Denver → KansasCity → Indianapolis →
Atlanta → D.C. → NewY ork (see Fig. 13). The LC, RC and rdv points will exchange messages, as discussed in
Section 4.4, about the status of the paths’ delay and gateway’s throughput in the network. Now let’s suppose that
the link Indianapolis→ Atlanta is congested. The RC will notify rdv 0000 about the poor performance of the GW
0010 – recall from Section 4.2 that a GW node periodically sends throughput information to the RC. Consequently,
the rdv will notify node 0001 about the poor performance of this GW. Hence, node 0001 will change its level-3
gateway and start using node 001112 as its new level-3 GW. Then, the new path for the packets from client to
server will be the following (pathlet-switching): Seattle→ Denver → KansasCity → Indianapolis→ Chicago→
NewY ork. Using this mechanism, we can potential discover and react to network performance degradation faster
than the traditional methods used at the end-points.

Figure 13: In-network path switching with VIRO

11recall that rdv maintains a mapping of gateway and the list of nodes using them
12a level-3 GW in the list of GWs received from the rdv point
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Figure 14: In-network dynamic pathlet switching framework: path switching components

5 Adaptive Resilient Routing via Preorders in SDN

In this section, we propose and advocate a new routing paradigm – dubbed routing via preorders – which circumvents
the limitations of conventional path-based routing schemes to effectively take advantage of topological diversity
inherent in a network with rich topology for adaptive resilient routing, while at the same time meeting the quality-
of-service requirements (e.g., latency) of applications or flows. We show how routing via preorders can be realized
in SDN networks using the “match-action” data plane abstraction. Next, we discuss in details our novel routing
paradigm.

5.1 Limitations of Path-Based Routing

We first use a simple toy example to illustrate the fundamental limitations of path-based routing. Consider two
edge-disjoint paths P1 (the upper green path) and P2 (the lower red path) from s = v1 to d = v2L+1 in Figure 15,
both are of length 2L. Let U denote the collection of nodes on P1 and P2. We see that there are in fact many paths
of length 2L (in fact, 2L!) from s to d in U . To exploit topological diversity, the rigidity of a path as a sequence of
nodes and links requires us to enumerate and pre-specify all paths from s to d in U for path-based routing. As the
network size increases, the number of paths from s to d can grow exponentially in the worst case – the combinatorial
curse 13. Perhaps more importantly, a path is a very fragile object in that if any link l = (vi, vi+1) or a node vi
along a path fails, the path ceases to exist. For example, using P1 as a primary path and P2 as a backup path
in Figure 15, any two-link failure event with one from P1 and the other from P2 would render both paths invalid.
This is despite the fact that as long as the two failed links are not incident at the same node, there always exists
another path (other than P1 and P2) from s to d. Only in the case that both links incident on a node v2k+1 fail
(or node v2k+1 itself fails), s cannot reach d as the network is partitioned.

Conventional routing schemes are primarily path-based, thus suffer from the fundamental limitations discussed
above. Classical IP routing protocols such as RIP and OSPF employ a single shortest-path. In addition, multipath
routing has been proposed (see [19, 20, 32]), where multiple paths are established between a source-destination pair.
Multipath routing can help improve latency and network resilience. However, it is still path-based and thus suffers
from the same limitations of path-based routing mentioned above; it also cannot exploit all possible paths between

13When not restricted to shortest paths, in a network with rich topology (i.e a dense graph where m = |E| � n = |V |) the number
of paths can in fact grow in the order of O(n!).
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Figure 16: Example of Routing Preorders and their associated PrOGs

a source-destination pair, apart from explicitly enumerating and setting all of them up for multipath routing. While
not constrained to shortest paths, MPLS relies on label-switched paths for both primary and protection routing.
With IP destination-based forwarding, part of the challenges in designing proactive fast rerouting schemes lies in
ensuring consistency between primary and backup paths to avoid forwarding loops under failures. This is achieved
in Failure Insensitive Routing (FIR) [26, 16, 25] by resorting to interface-specific forwarding (ISF), which provides
the first provably correct IP Fast Rerouting algorithm for handling single link (or node) failures. Various IP fast
rerouting schemes (see [14, 27, 33] and references therein) have since been proposed, none of which are resilient
against arbitrary multiple link/node failures. As the number of possible (concurrent) link failures increases –
thus also the number of possible failure combinations, the combinatorial nature of the problem renders path-based
routing approaches less effectual, if not infeasible (see [7] for an interesting negative result regarding the infeasibility
of resilient routing under ISF for protecting against arbitrary k link failures when k > 1).

Other alternative resilient routing schemes have also been proposed, e.g via failure-carrying packets [24, 15] where a
new path is computed on the fly at each node when encountering failures. The classical link reversal algorithm [10]
is the first non-path-based routing scheme, where a new directed acyclic graph (DAG) is constructed in a distributed
fashion when encountering a failure, and is provably resilient against arbitrary k link failures in that reachability
between any two nodes is guaranteed unless the network is partitioned. Dynamic link reversal mechanisms are
adopted in [18] to ensure data plane connectivity under arbitrary link failures. The main drawback of link reversal
mechanisms is that in the worst case it takes O(n2) steps to converge. The authors in [5] cleverly implement a
graph search algorithm (e.g a depth first search) via pre-installed “match-action” rules in SDN switches, and a
dynamically adjusted “tag” carried in packets to achieve resiliency against arbitrary link failures. The downside of
this scheme is that under failures all packets may take up to O(n) steps in the worst case to reach the destination,
as they “walk around” (e.g in a depth first search manner) the network to search for an available path. Neither [18]
nor [5] takes into account the latency constraint when exploring alternative paths. Given that most applications
run on TCP, we believe that bounding the latency of packets (both under the normal and failure scenarios) is
important, as long delayed packets will likely lead to time-outs, triggering unnecessary packet retransmission; they
will further reduce the throughput of applications. Lastly, we would like to point out that various diverse and
resilient routing schemes (e.g [30, 4, 11]) have been “customer-designed” for data center networks, which often
only work for specific types of network topologies (e.g Fat-Tree or Leaf-Spine networks).

5.2 Resilient Routing via Preorders

Basic Notions and Illustration. Let Gs→d = (Us→d,Ξs→d) be a connected14 subgraph of G, where s, d ∈
Us→d ⊆ V . We will orient the edges of Gs→d to create a special preorder on U , referred to as a routing preorder
(Γs→d) from s to d .

Mathematically, a preorder . on a node set U is a binary relation that is reflective and transitive15. For any

14Namely, any node in Us→d can reach any other node in Us→d without traversing any node outside Us→d. In particular, Gs→d is
s− d connected. For conciseness, we drop s→ d from Us→d when the context is clear.

15We note that if . is antisymmetric, it yields a partial order, denoted by ≺ on U . (U,.) is called a preordered set or proset, and
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u, v ∈ U , if v . u, we say v is a predecessor of u, and u a successor of v; in addition, v is a child of u, and u a
parent of v, if v . u but u 6. v (we denote this relation by v � u), and @ w ∈ U such that v � w � u. Given S ⊆ U ,
w ∈ U is called an upper bound of S, if ∀ v ∈ S, v . w, and it is a least upper bound of S, if for any upper bound w′

of S, w . w′. The (greatest) lower bounds of S can be similarly defined. We say a preorder is a (routing) preorder
from s to d (and Us→d a routing cover), if the following conditions are met: i) s is the unique greatest lower bound
of U , and d is the unique least upper bound of U ; and ii) for any u ∈ U , s . u . d.

Figure 16 shows an example of a routing preorder from s to d, where v → u indicates v is a child of u, i.e., v � u;
and v ↔ u indicates u . v and v . u (in this case we refer to u and v as siblings). Intuitively, the condition ii)
above implies that, for any u ∈ U , there is a directed path (or a chain) from s to u and from u to d. We call the
directed graph induced by a (routing) preorder as a preordered graph or PrOG in short. As bi-directed edges are
allowed in PrOG, it is in general not a directed acyclic graph (DAG).

Given a flow F from s to d, instead of mapping it to a single path or multiple paths for routing, we select a routing
cover Us→d and construct a preorder .s→d for routing packets of F from s to d: at any node u( 6= d) ∈ Us→d,
packets of F can be proportionally routed to either one of its parents and may also to one of its siblings. In other
words, packets are dynamically routed along all feasible paths contained in the PrOG by appropriately merging and
splitting traffic at each node, thus utilizing all relevant links, without the need to enumerate and specify all paths.
With an appropriately chosen PrOG, routing via preorders has built-in resiliency. Consider again the toy example
in Figure 15 where the routing PrOG from s = v1 to d = v2L+1 is defined by orienting all edges from left to right.
In contrast to path-based routing (say, with two equal-cost, edge-disjoint paths), routing via preorders, using this
PrOG, is resilient against arbitrary link failures as long as they do not partition the network. In fact, we argue
that it is possible to construct PrOGs in such a manner that routing via preorders attains the (latency-constrained)
optimal resiliency as we will expound on further below.

Preorder Selection for Optimal Resilient Routing. Clearly, what preorder (or PrOG) is selected for routing
a flow determines its resiliency. In general, with more nodes and edges included in the routing PrOG, the added
diversity increases the built-in resiliency against link or node failures. However, the enhanced resiliency is achieved
at the expenses of increasing latency and latency variability of the PrOG. Bounding the overall latency and latency
variability under both normal operations and under failures is important for delay-sensitive (e.g interactive) appli-
cations. It can also affect throughput-sensitive applications (e.g bulk transfer), as re-ordered packets can trigger
TCP time-out and unnecessary duplicate packet transmission, thus reducing the overall application throughput.
With bounded latency and latency variability, we can also effectively employ GRO and other mechanisms [11] at
the destination to put out-of-ordered packets in order before passing them on to TCP.

Consider a network G = (V,E) with a link latency matrix Φ = [φij ], where φij indicates the latency of link (i, j),
if (i, j) ∈ E; otherwise φij = 0. The latency of a path P in G, φ(P ), is thus the sum of its links. For simplicity of
exposition, we will equate path length with its latency. Consider a flow F from s to d with a latency requirement
τF under normal operations (and a possibly relaxed latency requirement τ̃F ≥ τF under failures). We would like
to construct a primary τF -complete routing preorder, or equivalently a PrOG, Γs→d(τF ), such that all paths in
Γs→d(τF ) meet the criterion, φ(P ) ≤ τF , and also construct a backup τ̃F -complete PrOG Γs→d(τ̃F ), such that
Γs→d(τF ) ⊆ Γs→d(τ̃F ). This leads us to introduce the following notion: a PrOG Γ(τk) is said to be τk-complete if
any path P from s to d in G such that φ(P ) ≤ τk is contained in Γ(τk) (as a directed path). A τk-Complete PrOG
can be constructed using a two-phase process based on a modified version of breadth-first search that we sketch
below: i) we start with the destination d and perform a breadth first search, where at each step we record for each
node, its minimum latency, and the minimum latency of its neighbors; ii) then, we start with the source s, retrace
the steps and prune any branches whose latency exceeds τk. The complexity of this algorithm is O(n2). Due to
space limitation, the detailed description of the algorithm and its correctness proof are omitted here.

As an illustration, consider the simple network shown in Figure 17(a) where link weight indicates latency. Fig-
ures 17(b)-d show three τ -complete PrOGs for s = 1 and d = 6, with τ1 = 3 , τ2 = 5, and τ3 = 15. Given a flow
F from s to d with a latency τF , we can simply pick one of τk’s, e.g the largest one, such that τk ≤ τF . Routing
via preorders using a τ -complete PrOG Γs→d(τ) has the following latency-constrained optimal resiliency property:
it is resilient against arbitrary k link or node failures as long as those failures do not partition Γs→d(τ) while still
meeting the latency requirement τ . This property follows from τ -completeness of the PrOG used for routing as
well as the monotonicity of τ -complete PrOGs under failures: let Ĝ be the network under k link (or node) failures;
clearly Ĝ ⊂ G. If Γ̂s→d(τ) is the τ -complete PrOG for Ĝ, then Γ̂s→d(τ) ⊆ Γs→d(τ). Hence if k failures partition

(U,≺) is a partially ordered set or poset, yielding a DAG.
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Figure 17: τk-complete routing preorders

Γs→d(τ), but s can still reach d after these failures, namely, there is a path P̃ from s to d in Ĝ, then φ(P̃ ) < τ .

Resilient Routing via Preoders: Handling Failures and Recoveries. For resilient routing via preorders, we
employ a τF -complete PrOG16 Γ(τF ) as the primary preorder for routing under normal operations with the latency
requirement τF , and a τ̃F -complete PrOG Γ(τ̃F ) where τ̃F ≥ τF as the backup preorder for resilient routing under
failures. As Γ(τF ) is contained in Γ(τ̃F ) i.e Γ(τF ) ⊆ Γ(τ̃F ), the directed edges in Γ(τF ) are considered primary
links which are used to forward packets of F during normal operations, whereas the directed edges in Γ(τ̃F ) \
Γ(τF ) are considered backup edges which may only be invoked for packet forwarding during failures. These backup
nodes/edges are installed in the relevant switches as (lower priority) backup rules and get invoked when there are
failures in the network. Hence, resilient routing with τ̃F -resiliency is achieved under arbitrary link/node failures
by dynamically deactivating certain directed edges that are affected by the failures and activating certain backup
directed edges when necessary. In the following, we will describe how failures and recoveries are handled via the
deactivation and activation processes, using the PrOG in Figure 16(a) as an example.

Deactivation Process: Suppose the link F → G goes down. This failure renders F a sink (i.e it has no outgoing
link). In this case, F simply deactivates the incoming link D → F by notifying D not to forward packets from
s = A to d = G to it. However, this does not affect the reachability from A to G, D simply uses the other outgoing
link D → E to forward packets from A to G. Suppose shortly afterwards, link D → E goes down, which renders
D a sink. This would trigger D to deactivate its two incoming links, A → D and B → D, and notify its two
neighbors. Any existing packets destined to d = G, that are buffered at D, will simply be rerouted back to A or
B, if they have not exceeded their latency deadline. As a result of these failures and subsequent (local) actions at
the affected nodes, the original PrOG dynamically shrinks by shedding the deactivated links, and the packets from
s = A are now routed solely in the remaining unaffected portion of the original PrOG, namely a sub-PrOG on the
node set {A,B,C,E,G}.

Activation Process: When a failed link or node comes back up, a recovery process is initiated to re-activate the
relevant portion of the PrOG. Suppose link F → G comes back up, then node F is not a sink anymore, which
triggers it to activate its incoming link D → F by notifying D to forward packets from A to G to it. Thus, node
D is not a sink anymore as well, which triggers it to activate its incoming links A → D and B → D by notifying
them. This allows packets from A to G to be routed through the shortest path again (assuming all links have the
same weight), i.e the path A→ D → F → G. Hence, we emphasize that another key advantage of our routing via
preorders is that when failed links/nodes are all recovered, it is guaranteed to return to the same PrOG that was

16For conciseness, we drop s→ d from Γs→d(τ) when the context is clear.
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originally selected for resilient routing.

Compared to existing resilient schemes such as [18, 5], which also guarantee resiliency against arbitrary link failures,
our proposed routing via preorders does not require any dynamic DAG recomputation (which in the worst case
takes O(n2) steps to converge), or on-the-fly graph search by re-routing packets along various paths to search for an
available path (which in the worse case takes O(n) steps), our scheme is far simpler and only involves deactivating
certain pre-installed rules (directed edges) when a node becomes a sink. Neither [18] nor [5] can ensure only paths
satisfying certain latency constraints are used for forwarding under failures. Furthermore, only a small portion of
packets, that have already been forwarded to the deactivated portion of the PrOG, need to be rerouted, if they
have not exceed their latency deadlines; otherwise they will be dropped. This is in contrast to [18] where during
the convergence period all packets will be subjected to bouncing around in the network until a new DAG is found,
and to [5] where after failures all packets will “walk around” (with repetitive returns to the sources) in the network
following a fixed procedure dictated by the graph search algorithm implemented via SDN rules.

5.3 Realization in SDN

In this section, we show that routing via preorders can be realized in SDN, and how packet forwarding is performed
under both normal and failure scenarios. We will also briefly touch on the issues and challenges involved - as
routing via preorders also requires some additional functionality that goes beyond existing OpenFlow switches.

The controller computes the routing preorder that satisfies the latency constraints for each flow, then installs the
corresponding rules in the relevant switches. Each switch forwards packets using the match-action data plane
abstraction, with small added functionality that switches17 need to be able to maintain and update certain internal
states, and generate an activation tag or a deactivation tag that can be piggybacked in data packets in response
to link/node failure and recovery events. Additionally, the switch performs some actions to handle link activation,
deactivation and failure.

Under conventional path-based routing, a flow F is first mapped to a pre-selected path P , then the SDN controller
sets up the corresponding flow entries in the switches along the path. In routing via preorders, we map a flow F
to a primary PrOG and a backup PrOG, which are translated into a set of match-action rules to be installed in
the relevant switches. Preorders can be realized in SDN as match-action rules by using group tables introduced in
OpenFlow 1.1.0 [9]. The ingress port (in-port) will always be part of the match fields, so as to ensure only packets
from incoming links that are part of the primary or backup textitPrOGs will be forwarded to an eligible outgoing
link.

Match-Action Rules, Switch States, and Packet Forwarding. Using the PrOGs in Figure 16(a) (primary)
and Figure 16(b) (backup) as an example. Consider node D, the match-action rules for which are shown in
Figure 18. At each switch, we need to differentiate between primary and backup links. This can be realized using a
“fast failover” group table entry. When a packet of flow F destined to d = G arrives at node D, it is matched, along
with its ingress port, against the rules associated with the flow F . Since there are two active primary outgoing
links D → E and D → F (thus the rules associated with them are inserted in a separate group (GrpId:200), which
has higher priority than that with the backup outgoing link D → J (GrpId:300). The is because “fast failover”
group type in OpenFlow executes the first live bucket, thus the order matters, and the liveness of each bucket is
controlled by the liveness of its associated port or group. Hence, the primary and backup outgoing links are listed
into different buckets in different groups, with the group of primary links listed first in the “fast failover” group
(GrpId:100). Only, when all the primary outgoing links are not live i.e (GrpId:200) is inactive, then the backup
links are used to forward packets. Later on, if the backup links also become inactive i.e (GrpId:300) is inactive,
the switch forwards packets back on any of its in ports, and invokes the “deactivation process” described earlier
(GrpId:400).

Since not all paths in the primary PrOG Γ(τF ) meet the latency requirement τF under normal operations, nor
in the backup PrOG Γ(τ̃F ) meet the (relaxed) latency requirement τ̃F under failures, only a subset of outgoing
links at each node i may be eligible for forwarding packets under normal operations and failures. This can be
accomplished via two steps. First, we insert two header fields in packets representing its latency requirements, a
latency field (similar to the standard TTL field) and a latency offset field. At the source s, the latency field is set
to τF and the latency offset field is set to τ̃F − τF . Any time a packet is forwarded along a link i→ j, the latency

17Switch and node are used interchangeably.
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Match Action 

src=A, dst=G, in_port = A Group: 100 

src=A, dst=G, in_port = B Group: 100 

src=A, dst=G, in_port = E - Invoke deactivation 
- Group: 100 

src=A, dst=G, in_port = F - Invoke deactivation 
- Group: 100 

Group 
Id 

Group 
Type 

Action 
Bucket 

State 

100 fast 
failover 

Group: 200 
Group: 300 
Group 400 

Active 
Active 
Active 

200 select Output: F 
Output: E 

Active 
Active 

300 select Output: J Active 

400 select 

- Output: 
in_port 
- Invoke    

deactivation 

Active 

Flow Table Group Table 

Match Action 

Activation tag [src, dst, in_port] Invoke activation 

Deactivation tag [src, dst, in_port] Invoke deactivation 

Figure 18: Match-action rules for switch D

field is decremented by φij ; the packet is dropped when this value reaches 0. In the following, we will describe how
the latency offset field is used when network failures are encountered. Second, for each outgoing link i → j, we
maintain a (per-destination) latency state information which records the minimal (path) latency achievable from
node i when forwarding a packet along the outgoing link j to destination d, denoted by τd(i → j). Hence, given
a packet with its current latency header value τ , only those outgoing links with τd(i → j) ≤ τ are eligible for
forwarding the packet.

To handle failure (and recovery) events, the state of each outgoing link i → j indicates whether the match-action
rule associated with the (primary or backup) outgoing link i → j is active or inactive. For example, if the
outgoing port j is down or when a deactivation notification is received from node j (see below), the corresponding
rule is marked inactive. Hence at node i, if it detects a failure event, e.g an outgoing link/port is down (or a
neighboring node is unresponsive), it would mark the rules associated with the outgoing link/port as inactive. If
the link/port/node is recovered, the rules are reset to active. The switch also keeps track of the total number of
active outgoing links/ports associated with the ruleset of flow F . If this number becomes 0, this renders switch i
a sink, namely, no active outgoing link is available for forwarding packets of F . This triggers switch i to invoke
the deactivation process: it will generate a special deactivation notification containing the appropriate information
(e.g the source-destination pair associated with the affected PrOG) and send it back along all its (active) incoming
links h → i; upon receiving this deactivation notification, the downstream switch h would mark the outgoing
link h → i inactive. If this results in switch h becoming a sink, it will continue this deactivation process further
downstream. The deactivation notification can be implemented either as a tag inserted in the packet header and
can be piggybacked by any data packet traveling along the (reverse) link i → h; or it can be implemented as
a special error message sent by i to h. Either mechanisms can be realized as a match-action rule, as shown in
Figure 18. When a failed link or node comes back up, a recovery process can be initiated to re-activate the relevant
portion of the PrOG.

Packet Forwarding Under Failures. In the event of network failures, e.g when both the primary outgoing
links D → E and D → F become inactive, the group associated with them also becomes inactive, then the eligible
backup outgoing link i→ j′ can be invoked for packet forwarding. When a packet is sent along an eligible backup
link j′ (here, j′ = J), we first add the value in the latency offset field to the latency header field before the latency
header is decremented by φij′ and reset the latency offset to 0. If the updated value in the latency header field
> 0, the packet is forwarded; otherwise it is dropped. This way we ensure that the packet will meet its (relaxed)
latency requirement.

We have implemented routing via preorders in Mininet with a slightly modified Open vSwitch (OVS) using ver-
sion (2.4) which supports group tables. We added modules to introduce adding extra parameters to group buckets,
manipulate extra header fields in packets, dynamically update the state of the ports (logically and not only phys-
ically (Up/Down)), select eligible outgoing links, support the activation & deactivation of links, and exchange
activation & deactivation tags. We also used a patch to support OpenFlow group chaining as it was not supported
before version (2.5). As part of our proposed routing paradigm, we will investigate different methods for effi-
ciently representing and compacting the match-action rules and state information in a way to minimize the space
requirements. We plan to deploy and test our novel routing paradigm in the GENI test-bed.
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Figure 19: Packet processing delay

6 GENI EXPERIMENTS

We have conducted a number of experiments to test our initial prototype of VIRO using both Mininet and GENI.
In this section, we describe four sets of experiments. In the first experiment, we investigate VIRO’s packet encap-
sulation/decapsulation overhead at edges switches. In the second experiment, we evaluate and compare VIRO’s
failure recovery mechanism as discussed in Section 3.6 (Neighbor Echo Request & Reply and Port Status). In the
third experiment, we show how VIRO supports host mobility. In the last experiment, we investigate the possibility
of using GENI stitching to forwards VIRO frames. The results of these experiments will help us to improve our
prototype of VIRO in GENI, for example: to select the best failure recovery mechanism.

In order to set up and run our VIRO’s experiments in GENI, we need to deploy our extend-OVS and VIRO POX
controllers (local and remote) to GENI. To achieve this, we first create a GENI node in our slice. Next, we download
and install our extend OVS and POX controllers to our GENI node. Then, we create an InstaGENI custom image
of our node using Flack 18. We later use this custom image at each GENI node in our experiments, because it has
all the features and applications that we use in our experiments. We use Flack to reserve the resources for our
experiments.

6.1 VIRO Packet Processing Overhead

Experiment Setup: in this experiment, we are interested in the answer to the following question: what is the
processing delay overhead imposed by VIRO’s packets encapsulation/decapsulation at the edges switches? To
achieve this, we create a simple topology with two hosts (h1 and h2), connected by two switches (see Figure
12). In order to isolate and measure the processing delay of individual packets, we use tcpdump to obtains the
timestamps of packets as they enter and leave a switch. The difference in the timestamps is the delay. The traffic
that is sent for the delay measurement is a stream of ping messages19 from host h1 to host h2. We repeat this
experiment using both a traditional OVS (with the standard IP forwarding) and our extended OVS.

Experiment Discussion: h1 pings h2 and we measure the time that it takes for each echo request message to
reach the interfaces for both switches. We compute the difference as the “packet processing delay time” - since we
do not generate high amounts of traffic, we consider the queue delay negligible. We repeat this experiment both
in Mininet and GENI, and the results are shown in Figures 19(a) and 19(b). The plots show the processing time
in milliseconds for a traditional OVS, extended-OVS encapsulation (encap-OVS) and extended-OVS decapsulation
(decap-OVS). We observe from our simulation results in Mininet that the 95 percentile for packet’s processing delay
is 2.30 × 10−2, 2.20 × 10−2 and 3.82 × 10−1 milliseconds for OVS, encap-OVS and decap-OVS. Our experimental
results from GENI are similar: 3.11 × 10−2, 3.01 × 10−2 and 3.50 × 10−1 milliseconds for OVS, encap-OVS and
decap-OVS. Our results show that the packet’s processing delay for OVS and encap-OVS are very close. However,
there is an increase in the packet’s processing time for decap-OVS (see Figures 19(a) and 19(b)). In the future,
we will investigate why the processing time for VIRO packet decapsulation is significantly larger than packet
encapsulation.

18Flack is a flash-based Web interface for viewing and requesting GENI resources. It also provides tools to manage the resources.
19We generate 100 ping request packets
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Figure 20: VIRO failure recovery experiment setup

6.2 VIRO Failure Recovery

Experiment Setup: in this experiment, we are particularly interested in investigating VIRO’s failure recovery
mechanisms: Echo Request & Reply and Port Status. To achieve this, we use the network topology illustrated in
Figure 20(b). We attach a client machine to node B and a server to node D. The network tool iperf is used to
generate traffic from the client to the server for 150 seconds. During this process, we fail the link C-D and measure
the time it takes for the network to recovery20. We repeat this experiment both in Mininet and GENI.

Figure 20(a) shows the deployment of our experiment in GENI. We use 3 PCs, 7 XenVMs and two GENI Aggregate
Managers (AMs): Wisconsin and Illinois. The nodes at the same level in VIRO are placed in the same GENI PC,
whereas nodes at different level are at distinct GENI PCs. Hence, from Figure 20(a), nodes 010 and 011 are in the
same PC. To connect the nodes at different GENI AMs we use EGRE tunnels.

Experiment Discussion: using VIRO’s routing protocol, the client at node B sends data packets to the server
at node D. Before failure, node B uses its level-3 GW (node C) to communicate with the server. After failure of
the link C-D, node C updates its routing table and sends a GW Withdraw message to its level-3 rendezvous point
(rdv) - node A. Node A updates its rdv store and sends a GW Remove message to node B. Then, node B updates
its routing table and queries its level-3 rdv (Node A) for a new level-3 GW. Node A returns itself as the new level-3
GW for node B.

From Figure 21(b) we observe that the failure happens at 23 seconds. We also observe that it takes 5 seconds for
the network to recover using the ports status event mechanism. Whereas for the echo-messages mechanism it takes
57 seconds. Similarly, our experimental results from GENI shows similar trend, see Figure 21(a). The failure occurs
at about 20 seconds, and it takes 12 seconds for the network to recover using the port status method. However,
it takes about 54 seconds for the network to recover using echo-messages. From these results we observe that the
Port status method outperforms Neighbor Echo Request & Reply method, as expected.

The recovery time for both experiments in GENI and Mininet is significantly large. Hence, in the future we will
improve the tuning of our experimental parameters in order to decrease the failure recovery time in the network.

6.3 VIRO Host Mobility

Experiment Setup: In this experiment, we show how VIRO handles host mobility. To achieve this, we use hte
network topology illustrated in Figure 10. We attach a client host at node C and an Apache server at node G. To
deploy this topology in GENI, we use the two AMs (Wisconsin and Illinois), 11 XenVMs and 4 PCs. Figure ??
shows our experimental set-up in GENI. The nodes at the same level in VIRO are placed in the same GENI PC,
whereas nodes at different level are at distinct GENI PCs. Hence, from Figure ??, nodes A,B are in the same PC.
Again, to connect the nodes at different GENI AMs we use EGRE tunnels.

20While the client at B is sending traffic to the server at D
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Figure 21: Failure Recovery

(a) GENI
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Figure 22: VIRO mobility experiment setup

Experiment Discussion: using VIRO’s routing protocol, the client host moves from node C to B while down-
loading a large image from the server at G. To implement the host mobility in GENI, we attached an standard
OVS to the client and to both nodes C and B (see Figure 10). Thus, we used OpenFlow rules to transfer the
client’s traffic from node C to B, this way emulating host mobility in GENI. During this process, a new VIRO vid
is assigned to the client after moving to node B by the RC. The server finds the client new vid by issuing an ARP
request to the remote controller, in the VIRO management plane. The client TCP connection is unaffected during
this process. Therefore, VIRO topology-aware, structure virtual id space offers support for host mobility.
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6.4 GENI Stiching

Experiment Setup: in this experiment, we are interested in the answer to the following question: can we route
VIRO packets in GENI using stitching? To achieve this, we create a simple topology with two switches (sw1 and
sw2) connected by a link (see Figure 6). We deployed this topology in GENI in two different AMs – Wisconsin(WI)
and Illinois(IL).21. To connect the switches at the different AMs, we use a stitching link. We transmit VIRO frames
22 from sw1 to sw2, and used the MAC addresses of both switches to set the SVID and DVID in the frame. We
use tcpdump to observe the packets as they arrive at sw2.

Experiment Discussion: using the experimental set-up described above, we observe the following: VIRO packets
with the SVID address equal to sw1’s MAC address, always arrive at the destination sw2. However, when we set
the SVID with a crafted MAC address, the transmitted packet never arrived at the destination switch. Therefore,
from these results, we can infer that the forwarding in stitching is done based on known MAC addresses only. Thus,
we are able to forward our VIRO frame, but we cannot forward it using valid vids.

7 Lessons Learned Using GENI and Future Directions

In this paper, we have described our experience in implementing a non-IP protocol – VIRO – in GENI. VIRO is
a “plug-&-play” routing paradigm for future networks. We have developed an initial prototype of VIRO using the
OVS-SDN platform. Because the existing OVS-SDN platform is closely tied to the conventional Ethernet/IP/TCP
protocol stack, we have modified and extended the OVS (both in the user space and the kernel space) to implement
VIRO forwarding functions. We have used POX controllers to build VIRO’s control and management planes. We
have carried out experiments to test VIRO failure recovery mechanism and its packet encapsulation/decapsulation
overhead at the edges switches.

GENI has incorporated the OVS/SDN software platform running on virtualized machines as part of its support for
networking innovations and experiments. When compared with traditional IP routers and Ethernet switches, the
SDN paradigm provides a far more flexible framework for controlling and configuring network elements (switches and
routers), and therefore allows researchers to develop and experiments with innovative network management services
or new applications that require more flexible control of data packets at the “flow” level. However, as the current
OVS software and SDN paradigm are closely tied to the existing TCP/IP/Ethernet protocol stack (especially
in terms of header fields, matching operations and allowable actions), such constraints make development and
experiments of non-IP protocols in GENI harder. In the case of VIRO, we are able to repurpose the Ethernet/VLAN
frame formats to emulate VIRO packet headers. But we have to modify and extend (both the user and kernel
spaces of ) the OVS software platform to introduce new match-action functions. This requires intimate knowledge
of the inner workings of the OVS platform and incurs significant development efforts. On the other hand, we are
able to re-use SDN POX controller as is to build VIRO routing and management functions and deploy them in
distributed and centralized modes to realize VIRO control/management plane functions. It is possible that not
all non-IP protocols that have been – or have yet to be – proposed by the networking research community can be
easily retrofitted into the TCP/IP/Ethernet header formats; furthermore, these non-IP protocols may contain data
plane functions that cannot be implemented within the “match-action” framework of OVS/SDN. This perhaps calls
for more general and powerful data plane abstractions and software platforms to be incorporated in GENI in the
future.

With our implementation of VIRO using the extended OVS/SDN software platform, we have successfully deployed
our prototype in GENI. In conducting GENI experiments, we find that reserving resources for complex topologies
using Flack often requires several attempts which can take long time. Thus, Omni23 could be a better tool to be
used to reserve resources for large topologies, although it is less user-friendly and you need to create the RSpec file
manually to build the experiment topology. We will use Omni to reserve the resources for our experiments in the
future. We also find that once the resources are reserved in GENI, it is not possible to dynamically change the
experiment network topology. In addition, we find that the number of available XenVMs is limited in some GENI
Aggregate Managers (AMs). Hence we could not deploy large VIRO topologies at these AMs. To connect nodes
at different GENI AMs, we first attempted to use stitching, but we were unable to get the resources. Instead, we

21 sw1 is at WI and sw2 is at IL
22We attach a POX controller at sw1 and use it to generate VIRO frames
23Omni is a GENI command line tool for reserving resources
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have used the EGRE tunnels for links across AMs. Recently, with the new version of omni (Omni v2.6), creating
stitching links have become easier. We perform an experiment to explore the possibility of using stitching links to
further improve our implementation. However, we find that we cannot forward VIRO frames using vids because
stitching forwarding is based on known MAC addresses only. In addition, We find that it is very easy to download
and install scripts to the allocated GENI resources, to select the type of links between GENI AMs, to bound
VMs to PCs and to create InstaGENI Custom Images, for example. These tools/functionalities make testing and
experimenting in GENI easy.

We plan to expand our current prototype of VIRO to include additional functionalities. These include further extend
the OVS software platform to support multi-path routing and resilient routing as well as additional management
functions such as access control mechanism. In addition, we plan to evaluate the scalability of our architecture
in GENI over larger topologies and to incorporate VIRO in GENI – as a non-IP service – to support research,
experiments and educational activities by other GENI researchers. Furthermore, we will implement and deploy
our in-network dynamic pathlet switching framework in GENI and develop algorithms that take advantage of the
different levels of decisions for path switching, and explore the rich diversity of paths in todays networks.
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