
Experience in Implementing & Deploying a Non-IP
Routing Protocol VIRO in GENI

Braulio Dumba, Guobao Sun, Hesham Mekky, Zhi-Li Zhang
{braulio,gsun,hesham,zhzhang}@cs.umn.edu

University of Minnesota, Twin Cities

Abstract—In this paper, we describe our experience in imple-
menting a non-IP routing protocol – Virtual Id Routing (VIRO)
– using the OVS-SDN platform in GENI. As a novel, “plug-
&-play”, routing paradigm for future dynamic networks, VIRO
decouples routing/forwarding from addressing by introducing a
topology-aware, structured virtual id layer to encode the locations
of switches and devices in the physical topology for scalable and
resilient routing. Despite its general “match-action” forwarding
function, the existing OVS-SDN platform is closely tied to the
conventional Ethernet/IP/TCP header formats, and cannot be
directly used to implement the new VIRO routing/forwarding
paradigm. As a result, we repurpose the Ethernet MAC address
to represent VIRO virtual id, modify and extend the OVS
(both within the user space and the kernel space) to implement
the VIRO forwarding functions. We also utilize a set of local
POX controllers (one per VIRO switch) to emulate the VIRO
distributed control plane and one global POX controller to realize
the VIRO (centralized) management plane. We evaluate our
prototype implementation through the Mininet emulation and
GENI deployment test and discuss some lessons learned using
the test-bed.

I. INTRODUCTION

The rapid growth in the number of computers, mobile
devices, smart appliances and other machines connected to
the internet today has increased the burden on the network
substrate. Such rapid growth also expedited the need to address
some of the well-known shortcomings of existing networking
technologies that “glue” the Internet together. For instance, the
Internet Protocol (IP) tightly couples network layer functions
such as addressing and routing, making it difficult to transition
from IPv4 to IPv6. It has poor support for mobility. Fur-
thermore, IP routers require extensive manual configuration.
In contrast, layer-2 technologies such as Ethernet need only
minimal configurations: Ethernet switches automatically learn
MAC addresses of hosts to build switching tables. However,
Layer-2 Ethernet technology does not scale to large (& wide-
area networks), as it provides sub-optimal routing and is not
robust to failures.

To address these challenges, we need better layer-2/layer-
3 networking technologies that is more scalable (e.g., with
small routing tables with fast lookup speed), provide better
support for mobility (e.g., by separating location/addressing
and identity/naming), provide high availability and reliability
(e.g., via proactive failure discovery and by localizing effects
of failures). Furthermore, such technologies should be easy
to manage and deploy – ideally, with the abilities to self-
configure and self-organize, and are endowed with stronger
security capabilities. Several Non-IP based routing and net-
work architectures [3][6][4][5] have been proposed to mitigate

some of the limitation of the current Internet technologies.
However, deployment and testing of these solutions at scale
have always been a huge challenge.

The emergence of Software Defined Networks (SDNs) and
OpenFlow capable switches, such as Open vSwitch (OVS)
[2] makes testing and experimenting with future technologies
easier. SDN increases network programmability by decoupling
the data and control planes [10][9]. It provides an unified
API through which a centralized controller can configure
and control the forwarding behaviors of switches. Hence, it
simplifies the task of configuring and managing large networks.
The SDN paradigm has been widely embraced by the research
community and adopted in large test-beds such as the Global
Environment for Network Innovation (GENI) [1], a wide-
area test-bed developed by the research community to enable
network innovations and large scale experimentations. As part
of its network infrastructure, GENI has employed the OVS-
SDN software platform to facilitate testing and deployment
for large scale experiments.

Virtual Id Routing (VIRO) is a novel “plug-&-play” routing
paradigm for future large dynamic networks [3]. It addresses
the limitations faced by the layer-3 (L3) IP routing proto-
cols as well as the layer-2 (L2) Ethernet switching technol-
ogy, while retaining the latter’s plug-&-play feature. VIRO
decouples routing/forwarding from addressing, and provides
a (L2/L3) convergence layer that unifies the conventional
L2/L3 routing/forwarding functionalities. VIRO is namespace-
independent and allows new addressing schemes to be intro-
duced into networks with no changes in the core routing and
forwarding functions in the network data plane devices. The
fundamental idea of VIRO is the introduction of a topology-
aware, structured virtual id space onto which physical identi-
fiers and high level names can be mapped. VIRO employs a
DHT (distributed hash table) style routing algorithm to build
routing tables, look up objects (name, addresses, vid’s, etc)
and forward packets [3]. Therefore, VIRO eliminates flooding
both in the data and control planes. Furthermore, VIRO is
highly scalable, localizes failures, supports multi-homing, fast
rerouting, multipath routing and it is easy to manage and
deploy. By decoupling addressing from routing, it also enables
access control as packets enter a network, and allows other
security features to be incorporated into the network control
and management more seamlessly.

In this paper, we describe our experience in implementing
and deploying VIRO in GENI using the SDN platform. We
have implemented an initial prototype of VIRO in GENI,
and our goal is two-fold: firstly, to test and evaluate VIRO’s
functionality and performance in GENI, and in the long term
to incorporate VIRO in GENI, as a non-IP service, to support
research, experiments and educational activities by other GENI978-1-4799-6204-4/14$31.00 c©2014 IEEE

Fig. 1: VIRO routing table for node A. Fig. 2: vid space as a virtual binary tree: the grey dotted lines
denote physical connectivity and the red boxes represent the unused
vid’s

researchers. To our knowledge, we are the first to deploy and
test a non-IP routing protocol in GENI. The contributions of
this paper are as follows:

• We implement and deploy an initial prototype of VIRO
in GENI using the SDN platform.

• We perform experiments to evaluate VIRO packet’s en-
capsulation/decapsulation overhead and our failure recov-
ery mechanisms. The results of these experiments will
help us to improve and extend our VIRO prototype.

• We describe our experience and lessons learned in imple-
menting and deploying a non-IP protocol in GENI.

The remainder of the paper is organized as follows. Section
II provides an overview of VIRO. Section III discusses our
implementation and deployment of VIRO in GENI. Section
IV presents our experiments and discusses our experimental
results. We conclude and discuss future work in Section V.

II. VIRO: VIRTUAL ID ROUTING PROTOCOL

In this section, we provide an overview of VIRO’s three
main components: vid space construction and vid assignment,
VIRO routing, and vid lookup and forwarding. For more details
about the VIRO routing protocol, the reader is referred to [3].

VIRO is a topology-aware, structured virtual id (vid)
routing protocol for future networks. It introduces a self-
configurable, self-organizing virtual id layer (layer-2/3 con-
vergence layer) where both physical identifiers (e.g. MAC
addresses), as well as higher layer addresses/names (e.g.,
IPv4/IPv6 or flat-id names) are mapped [3]. VIRO’s structured
vid space embeds the physical network topology formed by
the connections among physical network components. Such
embedding is illustrated in Figure 2 using a Kademlia-like [7]
virtual binary tree, where the physical devices (e.g. switches)
are represented by the leaf nodes. All intermediary nodes in
the virtual binary tree are logical nodes labelled with the bit-
strings representing the vid’s of the VIRO switches residing in
that subtree. Next, we describe the main components of VIRO:

Vid space construction and vid assignment: at the
network bootstrapping phase, the topology-aware, structured
vid space is constructed. VIRO uses a Kademlia-like virtual
binary tree to structure the vid space, where each VIRO
switch (a leaf node of the tree) is assigned an L-bit string vid
corresponding to the bits from the root to that leaf node. After
the network bootstrapping process, the vid of a new VIRO
node joining the network is assigned based on the vid’s of
its physical neighbors. When an end-host attaches to a VIRO
switch, it is assigned an extend vid comprised of the L-bit vid

of the switch plus a random l-bit host id. This virtual id space
preserves the physical proximity of the nodes.

Routing Tables Construction: VIRO routing tables are
constructed based on the vid logical distance(σ)1 between the
nodes for each level of the vid space. It employs a DHT-
like “publish-&-query” mechanism, where each node publishes
and queries routing information to rendezvous nodes[3]. VIRO
completely eliminates network flooding in both the control and
data planes. VIRO’s vid prefixes are used to aggregate routing
information for sections of the network (e.g. 10***). Thus,
VIRO routing table size is O(log N), where N = number of
nodes in the network. In VIRO, failure of a link or switch are
localized because no switch needs to maintain a network-wide
full topology.

Virtual Id lookup and Forwarding: forwarding of packets
in a VIRO network is performed using vid’s only. However, at
the networks edges the vids are mapped to persistent identifier
(pid), e.g. MAC address/IP address, or vice-versa, in order to
locate the end-hosts or to route VIRO packets in the network.
We will illustrate the packet forwarding mechanism using
Figures 1 and 2. Suppose node A with vid = 00000 wants
to send a data packet to node F with vid = 10010 (see Figure
2). Node A will first compute the logical distance (σ) between
its vid and F’s vid, which in this case is 52. Then, node A will
look up for a level-5 gateway(GW) in its routing table (see
Figure 1), and forward the packet to the next-hop C to reach
M3. The next-hop follows similar process until the packet is
delivered to the destination. However, node A will directly
forward the packet to F, if it is physically attached to node
F. Similar process is used to forward control packets, whose
destination vid identifies a VIRO switch.

III. DESIGN AND IMPLEMENTATION

In this section, we present the design & implementation
framework of VIRO-GENI. First, we discuss the challenges in
implementing VIRO, a non-IP protocol using the OVS/SDN
platform. Next, we describe our data/control/management
plane solutions to address the challenges. We conclude this
section by providing a detailed example of how forwarding is
done in a VIRO-GENI network.

A. Implementation Challenges

The OVS software platform is derived from the OpenFlow
switch specifications and SDN paradigm. When compared to

1σ = L - length of the longest common prefix.
2L= 5; σ = 5− 0 = 5
3In this example, M is the default GW for A’s level-5.

Fig. 3: Software Stack in VIRO-GENI Node

traditional network devices (e.g. Ethernet switches and IP
routers), Openflow and OVS enable a far more flexible data
plane with configurable forwarding behaviors at the “flow”
level, which are defined by the “match-action” rules spec-
ified by a SDN controller. Nonetheless, the existing Open-
flow/OVS/SDN platforms are strongly tied to the conventional
Ethernet/IP/TCP protocol stack. In contrast, VIRO has its own
“topology-aware” addressing (vid’s) scheme, with its unique
routing and forwarding behaviors. It employs a distributed
routing protocol with a novel “pub-sub” mechanism [3] and it
has build-in multipath and fast failure (re)routing capabilities.
VIRO forwarding is done by using both the destination vid
(via vid prefix matching) and a forwarding directive to look
up VIRO routing tables to select a gateway and then the next-
hop. Thus, VIRO’s forwarding behavior cannot be directly
implemented using the standard “match-action” function of
OpenFlow.

GENI has employed the OVS-SDN software platform.
Hence, we cannot directly deploy and test a non-IP protocol
in the testbed because of the limitations of existing OVS-SDN
platform. In the following, we present our design & imple-
mentation framework as well as solutions to overcome the
challenges in adapting the OVS/SDN platform in implementing
a non-IP protocol such as VIRO in GENI.

B. Design Overview

We modify the OVS software to implement VIRO switch-
ing functions in VIRO-GENI switches (nodes), and adapt SDN
controllers to implement VIRO control and management plane
functions, see Figure 3. As will be detailed further below,
VIRO-GENI nodes use OVS in the data plane and POX
controllers in the control and management planes. Each node
runs the software stack shown in Figure 3. In the data plane,
we repurpose the Ethernet MAC address to represent VIRO
virtual id. We also modify and extend the OVS match-action
(both within the user and kernel spaces) to realize VIRO packet
forwarding functions. The (slow-path) OVS daemon (in the
user space) connects to an OpenFlow local controller (LC) that
executes the VIRO module which is responsible for running
the VIRO routing protocol. Furthermore, the OVS daemon
connects to a remote controller (RC), which is responsible for
VIRO’s management plane.

C. Data Plane

For the data plane implementation, we use OVS version
1.0 with Nicira’s extensions. To route VIRO packets in the

data plane, we first define the VIRO frame [8], see Figure 4.
It extends the Ethernet frame in a similar way to the VLAN
protocol. VIRO frame has the EtherType 0x0802 to differenti-
ate it from standard Ethernet protocols such as IP, LLDP and
ARP. In a VIRO frame, we reuse the 6-bytes of the source
and destination MAC addresses (SMAC and DMAC) of the
standard Ethernet frame, to set the VIRO virtual addresses
(Vids). From the DMAC, it uses 4-bytes for the destination
switch’s vid (DVID), and 2-bytes for the destination host
(DHOST) identifier. Similarly for the SMAC, it uses 4 and
2 bytes to set the source switch’s vid (SVID) and source host
(SHost) identifier.

After the 12 bytes in the Ethernet frame, we introduce new
6 bytes for the VIRO protocol header, where we have 2-bytes
for VIRO’s protocol identifier (VPID), and the last 4-bytes
are the forwarding directive (FD)[3]. The remaining bytes in
the VIRO frame are used to encapsulate the EtherType and
the payload of the original Ethernet frame 4. In the original
Ethernet frame, we add a new EtherType 0x0803 for VIRO
control packets (see Section III-D). By adding 6-bytes to
the Ethernet frame header, to include VIRO protocol header,
we use Path MTU Discovery at the end-hosts to reduce their
frame size, in order to avoid encapsulation without using any
fragmentation [8].

To forward our VIRO frame in the OVS data-path, we
extend the match/actions in the OpenFlow protocol, because
the current OpenFlow standard is still tied to the Ether-
net/IP/TCP protocol stack. Thus, in order to route VIRO
packets, we modify and extend both the OVS fast and slow
path with new actions: insert/remove VIRO headers, rewrite
the forwarding directive and match on VIRO switch’s vid.
With these additions, the OVS fast and slow path are now
responsible for the following tasks:
• OVS Daemon (Slow-Path): to translate between IP pack-

ets/VIRO packets (EtherType, FD) and to insert rules for
routing at Kernel.

• OVS Kernel (Fast Path): to translate between IP pack-
ets/VIRO packets (end-host), to forward IP packets among
local machines and to forward VIRO packets.

Table I shows the list of new actions, we have added in
both fast and slow paths:

Actions Descriptions
PUSH_FD add VPID and FD
POP_FD remove VPID and FD
SET_VID_SRC_SW set the first 4 bytes of the SVID
SET_VID_SRC_HOST set the last 2 bytes of the SHost
SET_VID_DST_SW set the first 4 bytes of the DVID
SET_VID_DST_HOST set the last 2 bytes of the DHost
SET_VID_FD_SW set first 4 bytes of the FD
SET_VID_FD_HOST set the last 2 bytes of the FD

TABLE I: List of the new actions added to our extended OVS.

In addition to routing VIRO packets, the data-plane also
forwards normal Ethernet frames for packets transmitted
among local hosts, attached to the same VIRO-GENI node
for example.

In the remaining of this section, we summarize the func-
tions implemented by the different modules illustrated in
Figure 3 (data, control and management planes).

4They form the payload of the VIRO frame

Fig. 4: VIRO Frame

D. Control Plane

The VIRO module attached to LC running on each node is
responsible for the following control-plane functions: neighbor
discovery, failure recovery, building the routing table, handling
VIRO packet encapsulation/decapsulation and packet miss
from the data-plane (see Section III-F and III-G). VIRO
control packets are identified by the protocol ID 0x0803 in the
frame payload (EtherType) to differentiate them from VIRO
data packets (e.g. IP packets). The types of control packets
handle by LCs are the followings:

• RDV Publish, RDV Query, RDV Reply: used to publish,
query or reply routing information from/to VIRO ren-
dezvous nodes.

• GW Withdraw, GW Remove: used to advertise failed
gateways information to others nodes.

• Controller Echo: used to assign switch’s vids by the RC.
• Neighbor Echo Request & Reply: heartbeat messages used

to discover the physically attached switches.
• Local Host: used to send host addresses mapping to the

LC.

For an explanation of how these packets are used in the
VIRO routing protocol, the reader is referred to [3] and to
Section III-F.

E. Management Plane

As illustrated in Figure 3, every VIRO-GENI node will
be connected to a single remote controller. Unlike the local
controller (LC), the remote controller (RC) is the only instance
that all OVSs in the network connect to. The purpose of
this controller is to simplify the management plane functions
that can be performed in a centralized fashion. For instance,
the RC is responsible for the following: network topology
discovery and maintenance (host/switch added or removed),
vid assignment (host and switches), ARP and DHCP request5
and IP/VID/MAC/PORT mapping (Global view). In Section
III-F we discuss in details the RC’s functions.

F. VIRO-GENI Network Boostrapping

In this subsection, we present the main events that occur
during the bootstrap of a VIRO-GENI network. Recall that
the OVS in each node in the network is connected to a local
controller running the VIRO module, and all the nodes are
connected to the same remote controller for management plane
functions.

Connection Up: initially, when a VIRO-GENI switch starts
it connects to both local controller(LC) and remote controller
(RC) using the standard OpenFlow protocol. The RC will insert
rules to receive all the ARP and DHCP packets generated by
host machines. We assign Ids to the controllers (RC-Id = 1
and LC-Id = 2). The VIRO-GENI switch uses these Ids to

5We reuse POX’s ARP and DHCP modules

differentiate both controllers, e.g.: ARP packets are sent to
controller with Id=1.

Vid Assignment: a VIRO-GENI switch gets its vid from
the RC. The RC constantly sends Controller Echo message
every k seconds to the LCs with the vid of the respective
switch 6. However, host’s vids are assigned when a host issues
a DHCP request. Whenever a RC leases an IP addresses, it
also assigns the host vid – first L-bits (4-bytes) from the host
access node and last l-bits (2-bytes) for the DHost.

After assigning the vids, the RC saves the mapping
DPID/VID for switches and the mapping MAC/IP/VID/PORT
for hosts to its topology table, in order to build its global view
of the network. In addition, after the host’s vid assignment, RC
will add the host to the list of “attached host” for the respective
switch (access-node). Furthermore, it sends the host’s address
mapping information to the respective LC.

Neighbor and Failure Discovery: the Local VIRO mod-
ules attached to each node find the physically attached switches
by exchanging Neighbor Echo Request & Reply messages
every i seconds. The VIRO module, in each node, has a
table for saving the neighbors’ vids. This table is updated
whenever a neighbor Echo Reply message is received, and
the last updated time is recorded for each entry. We use this
table to find the failed neighbors, for example: if an entry is
not updated after j seconds, then we consider this neighbor
switch as failed. We also use OpenFlow Port Status messages
for neighbor failure discovery. VIRO handles nodes failures
without resorting to flood of failure notification (as used in
OSPF), instead, it utilizes a withdraw and update mechanism
[3].

Routing Table Construction: the local VIRO module
in each VIRO-GENI node builds its routing tables using
the publish-&-query algorithm described in [3] (RD Publish,
RDV Query, RDV Reply messages). These routing tables are
installed into the OVS slow-path flow-tables to immediately
perform any intermediate packet forwarding [8].

End-Host Discovery: the VIRO module connected to the
LC discovers the end-host attached to its local switch from
Local Host messages receive from the RC during the DHCP
lease process. It stores the mapping IP/MAC/VID/PORT for
future end-host name resolution, and it uses this mapping to
build its local view.

Pid-Vid Resolution: in the original design of VIRO[3],
a one-hop (multi-hop) DHT is used for pid-vid look-up and
resolution. For simplicity, in our current implementation, we
use a centralized approach for pid-vid resolution: i) When an
end host (VM) joins a VIRO network, it first runs DHCP. The
DHCP request is captured and sent to RC by the VIRO switch
attached to it. After leasing an IP address to an end host, RC
assigns the host vid and it saves the mapping pid-vid in its
topology table; ii) When one end host x wants to communicate
with another host y in a VIRO network, it first issues an ARP
request. The VIRO switch attached to it forwards this packet
to the RC. Then, RC returns host y vid in the ARP reply by
replacing DMAC with host y vid (recall that RC has a global
view of the network).

In summary, whenever a new VIRO-GENI switch is at-
tached to the network. Firstly, it connects to the RC and LC
controller. Consequently, it receives its vid from the RC. Then,
it discovers the physically connected neighbor by generating
Neighbor Echo Request & Reply messages. It uses these

6We will use these echo messages in the future for RC failure discovery

packets or PortStatus events to discover the failure of its
directly connected nodes. In addition, it builds its routing table
by exchange control packets with the others LCs (VIRO’s
publish-&-query algorithm). Lastly, it discovers its attached
hosts during the host vid assignment process (Local Host
messages).

Fig. 5: VIRO packet forwarding between two host machines

G. Packet Forwarding in a VIRO-GENI Network

In this subsection, we explain how the address/vid mapping
and packet forwarding is performed in a network composed
with VIRO-GENI switches. To achieve this, we use the exam-
ple illustrated in Figure 5. In this example, host x communi-
cates with host y, using the following steps;

• Host x sends a ARP query to resolve host y IP address.
• VIRO-GENI switch x forwards the ARP query to RC.
• RC returns the ARP reply packet and it replaces the

DMAC with the vid of host y, which is composed of
switch y vid prepended to host y l-bit identifier (recall
that RC has a global view of the network).

• Host x receives the ARP reply and generates the first
Ethernet frame, whose DMAC address is host y vid. This
frame is forwarded to switch x.

• The Ethernet frame will be received by the source’s access
node (switch x), and it will generate a miss in the OVS
fast-path and slow-path. Then, the frame will be send
to VIRO LC, and it will replace the SMAC with the
SVID. In addition, it will push the VIRO headers into
the Ethernet frame and forward the packet to the next
destination, according to its routing table. Lastly, it will
add OpenFlow rules to insert the VIRO packet header
into packets received from host x and to set the SVID
and SHost appropriately. This will cause future packets
to be forwarded by the fast path.

• The intermediary VIRO switches (e.g. switch z) will
forward the VIRO packets to the next hop, according
to their VIRO routing table (this process may include
rewriting the FD).

• When the VIRO packet is received by the destination
VIRO switch y, it will first generate a miss in the OVS
fast and slow path. Then, the packet will be send to VIRO
LC. Next, LC will find that it is attached to the destination
access node (switch y), by comparing the packet DVID
with the access node’s vid. Hence, LC will pop the VIRO
header and replace the DVID with host y MAC address
(recall that LC has local view of all host attached to
it). Afterwards, LC will forward the packet to host y.
Furthermore, it will add OpenFlow rules to remove the

(a) Topology in GENI (b) Network topology

Fig. 6: VIRO packet processing overhead experimental setup

VIRO packet header and rewrite the destination MAC
address for subsequent packets.

• All packets between host x and y are transmitted in the
VIRO-GENI network using a similar process.

• Packets transmitted between host x and k use the standard
Ethernet frame, because both hosts are attached to the
same access node VIRO-GENI switch x.

IV. EXPERIMENTS

We have conducted a number of experiments to test our
initial prototype of VIRO using both Mininet and GENI. In
this section, we describe two sets of experiments. In the
first experiment, we investigate VIRO’s packet encapsula-
tion/decapsulation overhead at edges switches. In the second
experiment, we evaluate and compare VIRO’s failure recovery
mechanism as discussed in Section III-F (Neighbor Echo
Request & Reply and Port Status). The results of these experi-
ments will help us to improve our prototype of VIRO in GENI,
for example: to select the best failure recovery mechanism.

In order to set up and run our VIRO’s experiments in GENI,
we need to deploy our extend-OVS and VIRO POX controllers
(local and remote) to GENI. To achieve this, we first create
a GENI node in our slice. Next, we download and install our
extend OVS and POX controllers to our GENI node. Then, we
create an InstaGENI custom image of our node using Flack
7. We later use this custom image at each GENI node in our
experiments, because it has all the features and applications
that we use in our experiments. We use Flack to reserve the
resources for our experiments.

A. VIRO Packet Processing Overhead

Experiment Setup: in this experiment, we are interested
in the answer to the following question: what is the process-
ing delay overhead imposed by VIRO’s packets encapsula-
tion/decapsulation at the edges switches? To achieve this, we
create a simple topology with two hosts (h1 and h2), connected
by two switches (see Figure 6). In order to isolate and measure
the processing delay of individual packets, we use tcpdump
to obtains the timestamps of packets as they enter and leave
a switch. The difference in the timestamps is the delay. The
traffic that is sent for the delay measurement is a stream of ping

7Flack is a flash-based Web interface for viewing and requesting GENI
resources. It also provides tools to manage the resources.

��

����

����

����

����

����

��� ������������� �������������

�
��
�

(a) GENI

��

����

����

����

����

����

��� ������������� �������������

�
��
�

(b) Mininet

Fig. 7: Packet processing delay

messages8 from host h1 to host h2. We repeat this experiment
using both a traditional OVS (with the standard IP forwarding)
and our extended OVS.

Experiment Discussion: h1 pings h2 and we measure the
time that it takes for each echo request message to reach the
interfaces for both switches. We compute the difference as
the “packet processing delay time” - since we do not generate
high amounts of traffic, we consider the queue delay negligible.
We repeat this experiment both in Mininet and GENI, and the
results are shown in Figures 7(a) and 7(b). The plots show
the processing time in milliseconds for a traditional OVS,
extended-OVS encapsulation (encap-OVS) and extended-OVS
decapsulation (decap-OVS). We observe from our simulation
results in Mininet that the 95 percentile for packet’s processing
delay is 2.30× 10−2, 2.20× 10−2 and 3.82× 10−1 millisec-
onds for OVS, encap-OVS and decap-OVS. Our experimental
results from GENI are similar: 3.11× 10−2, 3.01× 10−2 and
3.50 × 10−1 milliseconds for OVS, encap-OVS and decap-
OVS. Our results show that the packet’s processing delay
for OVS and encap-OVS are very close. However, there is
an increase in the packet’s processing time for decap-OVS
(see Figures 7(a) and 7(b)). In the future, we will investigate
why the processing time for VIRO packet decapsulation is
significantly larger than packet encapsulation.

B. VIRO Failure Recovery

Experiment Setup: in this experiment, we are particularly
interested in investigating VIRO’s failure recovery mecha-
nisms: Echo Request & Reply and Port Status. To achieve
this, we use the network topology illustrated in Figure 8(b).
We attach a client machine to node B and a server to node
D. The network tool iperf is used to generate traffic from the
client to the server for 150 seconds. During this process, we
fail the link C-D and measure the time it takes for the network
to recovery9. We repeat this experiment both in Mininet and
GENI.

Figure 8(a) shows the deployment of our experiment in
GENI. We use 3 PCs, 7 XenVMs and two GENI Aggregate
Managers (AMs): Wisconsin and Illinois. The nodes at the

8We generate 100 ping request packets
9While the client at B is sending traffic to the server at D

(a) Topology in GENI

(b) Network Topology

Fig. 8: VIRO failure recovery experiment setup

same level in VIRO are placed in the same GENI PC, whereas
nodes at different level are at distinct GENI PCs. Hence, from
Figure 8(a), nodes 010 and 011 are in the same PC. To connect
the nodes at different GENI AMs we use EGRE tunnels.

Experiment Discussion: using VIRO’s routing protocol,
the client at node B sends data packets to the server at node
D. Before failure, node B uses its level-3 GW (node C) to
communicate with the server. After failure of the link C-D,
node C updates its routing table and sends a GW Withdraw
message to its level-3 rendezvous point (rdv) - node A. Node
A updates its rdv store and sends a GW Remove message to
node B. Then, node B updates its routing table and queries its
level-3 rdv (Node A) for a new level-3 GW. Node A returns
itself as the new level-3 GW for node B.

From Figure 9(b) we observe that the failure happens at
23 seconds. We also observe that it takes 5 seconds for the
network to recover using the ports status event mechanism.
Whereas for the echo-messages mechanism it takes 57 seconds.
Similarly, our experimental results from GENI shows similar
trend, see Figure 9(a). The failure occurs at about 20 seconds,
and it takes 12 seconds for the network to recover using the
port status method. However, it takes about 54 seconds for the
network to recover using echo-messages. From these results
we observe that the Port status method outperforms Neighbor
Echo Request & Reply method, as expected.

The recovery time for both experiments in GENI and
Mininet is significantly large. Hence, in the future we will
improve the tuning of our experimental parameters in order to
decrease the failure recovery time in the network.

V. LESSONS LEARNED USING GENI AND FUTURE
DIRECTIONS

In this paper, we have described our experience in im-
plementing a non-IP protocol – VIRO – in GENI. VIRO

��

����

��

����

��

�� ��� ��� ��� ��� ���� ���� ���� ����

��
����
���

�������

���������
�����������

(a) GENI

��

����

����

����

����

�����

�����

�����

�� ��� ��� ��� ��� ���� ���� ���� ����

��
����
���

�������

���������
�����������

(b) Mininet

Fig. 9: Failure Recovery

is a “plug-&-play” routing paradigm for future networks.
We have developed an initial prototype of VIRO using the
OVS-SDN platform. Because the existing OVS-SDN platform
is closely tied to the conventional Ethernet/IP/TCP protocol
stack, we have modified and extended the OVS (both in
the user space and the kernel space) to implement VIRO
forwarding functions. We have used POX controllers to build
VIRO’s control and management planes. We have carried out
experiments to test VIRO failure recovery mechanism and
its packet encapsulation/decapsulation overhead at the edges
switches.

GENI has incorporated the OVS/SDN software platform
running on virtualized machines as part of its support for
networking innovations and experiments. When compared with
traditional IP routers and Ethernet switches, the SDN paradigm
provides a far more flexible framework for controlling and con-
figuring network elements (switches and routers), and therefore
allows researchers to develop and experiments with innovative
network management services or new applications that require
more flexible control of data packets at the “flow” level.
However, as the current OVS software and SDN paradigm
are closely tied to the existing TCP/IP/Ethernet protocol stack
(especially in terms of header fields, matching operations and
allowable actions), such constraints make development and
experiments of non-IP protocols in GENI harder. In the case
of VIRO, we are able to repurpose the Ethernet/VLAN frame
formats to emulate VIRO packet headers. But we have to mod-
ify and extend (both the user and kernel spaces of) the OVS
software platform to introduce new match-action functions.
This requires intimate knowledge of the inner workings of the
OVS platform and incurs significant development efforts. On
the other hand, we are able to re-use SDN POX controller
as is to build VIRO routing and management functions and
deploy them in distributed and centralized modes to realize
VIRO control/management plane functions. It is possible that
not all non-IP protocols that have been – or have yet to
be – proposed by the networking research community can
be easily retrofitted into the TCP/IP/Ethernet header formats;
furthermore, these non-IP protocols may contain data plane
functions that cannot be implemented within the “match-
action” framework of OVS/SDN. This perhaps calls for more
general and powerful data plane abstractions and software
platforms to be incorporated in GENI in the future.

With our implementation of VIRO using the extended
OVS/SDN software platform, we have successfully deployed

our prototype in GENI. In conducting GENI experiments, we
find that reserving resources for complex topologies using
Flack often requires several attempts which can take long time.
Thus, Omni10 could be a better tool to be used to reserve
resources for large topologies, although it is less user-friendly
and you need to create the RSpec file manually to build
the experiment topology. We will use Omni to reserve the
resources for our experiments in the future. We also find that
once the resources are reserved in GENI, it is not possible
to dynamically change the experiment network topology. To
connect nodes at different GENI AMs, we first attempted to use
stitching, but we were unable to get the resources. Instead, we
have used the EGRE tunnels for links across AMs. Recently,
with the new version of omni (Omni v2.6), creating stitching
links have become easier. We will explore the possibility of
using stitching links to further improve our implementation in
the future. In addition, We find that it is very easy to download
and install scripts to the allocated GENI resources, to select
the type of links between GENI AMs, to bound VMs to PCs
and to create InstaGENI Custom Images, for example. These
tools/functionalities make testing and experimenting in GENI
easy.

We plan to expand our current prototype of VIRO to
include additional functionalities. These include further extend
the OVS software platform to support multi-path routing and
resilient routing as well as additional management functions
such as access control mechanism. In addition, we plan to
evaluate the scalability of our architecture in GENI over larger
topologies and to incorporate VIRO in GENI – as a non-
IP service – to support research, experiments and educational
activities by other GENI researchers.

ACKNOWLEDGMENT

The work was supported in part by a Raytheon/NSF subcontract
9500012169/CNS-1346688, the NSF grants CNS-1017092, CNS-1117536 and
CRI-1305237, and the DTRA grant HDTRA1- 09-1-0050.

REFERENCES

[1] GENI: Exploring Networks of the Future. [Online]. Available:
https://www.geni.net/

[2] OpenvSwitch. [Online]. Available: http://www.openvswitch.org
[3] S. Jain, Y. Chen, and Z. Zhang, “VIRO: A Scalable,Robust and Names-

pace Independent Virtual Id Routing for Future Networks”, in Proc. of
INFOCOM, 2011.

[4] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica,
“ROFL: Routing on Flat Labels”, in Porc. of SIGCOMM, 2006.

[5] B. Ford, “Unmanaged Internet Protocol: Taming the Edge Network
Management Crisis”, SIGCOMM CCR, vol. 34, 2004.

[6] C. Kim, M. Caesar, and J. Rexford, “Floodless in Seattle: A Scalable
Ethernet Architecture for Large Enterprises”, in Proc. of SIGCOMM,
2008.

[7] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric”, in Proc. of IPTPS, 2002.

[8] H. Mekky, C. Jin, and Z. Zhang, “VIRO-GENI: SDN-based Approach
for a Non-ip Protocol in GENI”, in Proc GREE, 2014.

[9] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Log-
ically centralized?: State Distribution Trade-offs in Software Defined
Networks”, in Proc HotSDN, 2012.

[10] A. Tootoonchian and Y. Ganjali, “Hyperflow: A Distributed Control
Plane for OpenFlow”, in Proc INM/WRE, 2010.

10Omni is a GENI command line tool for reserving resources

